Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{1}{3^2}+\frac{1}{3^4}+...+\frac{1}{3^{100}}\right)-\left(\frac{1}{3}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)
\(3^2A=3^2\left(\frac{1}{3^2}+\frac{1}{3^4}+...+\frac{1}{3^{100}}\right)-3^2\left(\frac{1}{3}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)
\(9A=\left(1+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(3+\frac{1}{3}+...+\frac{1}{3^{97}}\right)\)
\(9A-A=\left(1-\frac{1}{3^{100}}\right)-\left(3-\frac{1}{3^{99}}\right)\)
\(8A=1-3=-2\)
A=\(\frac{-2}{8}=\frac{-1}{4}\)
\(B=4\left|\frac{-1}{4}\right|+\frac{1}{3^{100}}=1+\frac{1}{3^{100}}=1\)
Vậy B=1
1. A = 75(42004 + 42003 +...+ 42 + 4 + 1) + 25
A = 25 . [3 . (42004 + 42003 +...+ 42 + 4 + 1) + 1]
A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 42 + 3 . 4 + 3 + 1)
A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 42 + 3 . 4 + 4)
A = 25 . 4 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1)
A =100 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1) \(⋮\) 100
Có: \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)
\(=2-1+1-\frac{1}{2}+...+\frac{1}{99}-\frac{1}{100}\)
\(=2-\frac{1}{100}=\frac{199}{100}\)
Có: \(1+2+3+...+100=\frac{101\left(100-1+1\right)}{2}=5050\)
\(\Rightarrow A=\frac{5050.\frac{-17}{60}.0}{\frac{199}{100}}=0\)
\(A=\dfrac{-1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow\dfrac{1}{3}A=\dfrac{-1}{3^2}+\dfrac{1}{3^3}-\dfrac{1}{3^4}+...-\dfrac{1}{3^{100}}+\dfrac{1}{3^{101}}\)
Cộng vế với vế:
\(A+\dfrac{1}{3}A=\dfrac{-1}{3}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}-\dfrac{1}{3^{100}}+\dfrac{1}{3^{101}}\)
\(\Rightarrow\dfrac{4}{3}A=\dfrac{-1}{3}+\dfrac{1}{3^{101}}\)
\(\Rightarrow A=\dfrac{1}{4}\left(\dfrac{1}{3^{100}}-1\right)\)
Do \(\dfrac{1}{3^{100}}< \dfrac{1}{3}< 1\Rightarrow A< 0\)
\(\Rightarrow\left|A\right|=-A=-\dfrac{1}{4}\left(\dfrac{1}{3^{100}}-1\right)=\dfrac{1}{4}\left(1-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow B=4\left|A\right|+\dfrac{1}{3^{100}}=1-\dfrac{1}{3^{100}}+\dfrac{1}{3^{100}}=1\)
=>\(-B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{2012}\right)\)
=\(\frac{1}{2}.\frac{2}{3}...\frac{2011}{2012}=\frac{1}{2012}\)