Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hệ số của x trong khai triển đã cho là: \(1-2+3-4+...+2017-2018=\left(-1\right)+\left(-1\right)+...+\left(-1\right)=-1009\).
\(A=-x^2+2xy-4y^2+x-10y-8\)
=> \(-4A=4x^2-8xy+16y^2-4x+40y+32\)
\(=\left(4x^2-8xy+4y^2\right)-\left(4x-4y\right)+1+12y^2+36y+31\)
\(=\left(2x-2y\right)^2-2\left(2x-2y\right)+1+3\left(4y^2+2.2y.3+9\right)+4\)
\(=\left(2x-2y+1\right)^2+3\left(2y+3\right)^2+4\ge4\)
=> \(A\le4:-4=-1\)
"=" xảy ra <=> \(\hept{\begin{cases}2x-2y+1=0\\2y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-\frac{3}{2}\\x=2\end{cases}}\)
Vậy max A=-1 <=> x=2 y=-3/2
Câu b em làm tương tự nhé!
1) \(A=36x^2+12x+1=\left(6x+1\right)^2\ge0\)
\(minA=0\Leftrightarrow x=-\dfrac{1}{6}\)
2) \(B=9x^2+6x+1=\left(3x+1\right)^2\ge0\)
\(minB=0\Leftrightarrow x=-\dfrac{1}{3}\)
4) \(D=x^2-4x+y^2-8y+6=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)
\(minD=-14\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
3) \(C=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\ge-36\)
\(minC\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
5) \(E=\left(x-8\right)^2+\left(x+7\right)^2=2x^2-2x+113=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{225}{2}\ge\dfrac{225}{2}\)
\(minE=\dfrac{225}{2}\Leftrightarrow x=\dfrac{1}{2}\)
Bài 2:
\(\left(5x+1\right)^2-\left(2xy-3\right)^2\)
\(=25x^2+10x+1-\left(2xy-3\right)^2\)
\(=25x^2+10x+1\left(4x^2y^2-12xy+9\right)\)
\(=25x^2+10x+1-4x^2y^2+12xy-9\)
\(=25x^2-4x^2y^2+10x+12xy-8\)
Bài 2:
\(\left(x-1\right)\left(x^2+x+1\right)=x^2\left(x-9\right)+2x+6\)
\(=x^3-1=x^3-9x^2+2x+6\)
\(=x^3-9x^2+2x+6=x^3-1\)
\(=x^3-9x^2+2x+6+1=x^3-1+1\)
\(=x^3-9x^2+2x+7=x^3\)
\(=x^3-9x^2+2x+7-x^3=x^3-x^3\)
\(=-9x^2+2x+7=0\)
\(\Rightarrow x=-\frac{7}{9};x=1\)
bài 1:
2(x^2-9).4(x^2-1)
=(2x^2-18)(4x^2-4)
=8x^4-8x^2-72x^2+72
=8x^4-80x^2+72
\(Bai1:2\left(x-3\right)\left(x+3\right)+4\left(x-1\right)\left(x+1\right)\)
\(=2\left(x^2-9\right)+4\left(x^2-1\right)\)
\(=2x^2-18+4x^2-4\)
\(=6x^2-22\)
\(Bai2:-\left(6x-1\right)\left(3-2x\right)+\left(3x-2\right)\left(4x-3\right)=17\)
\(\Leftrightarrow-\left(18x-12x^2-3+2x\right)+12x^2-9x-8x+6=17\)
\(\Leftrightarrow-18x+12x^2+3-2x+12x^2-9x-8x+6=17\)
\(\Leftrightarrow24x^2-37x+9-17=0\)
\(\Leftrightarrow24x^2-37x-8=0\)
Đề sai??
a) \(A=\left(x+1\right)\left(2x-1\right)\)
\(A=2x^2+x-1\)
\(A=2\left(x^2+\frac{1}{2}x-\frac{1}{2}\right)\)
\(A=2\left[x^2+2\cdot x\cdot\frac{1}{4}+\left(\frac{1}{4}\right)^2-\frac{9}{16}\right]\)
\(A=2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]\)
\(A=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge\frac{-9}{8}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x+\frac{1}{4}=0\Leftrightarrow x=\frac{-1}{4}\)
Vậy Amin = -9/8 khi và chỉ khi x = -1/4
b) \(B=4x^2-4xy+2y^2+1\)
\(B=\left(2x\right)^2-2\cdot2x\cdot y+y^2+y^2+1\)
\(B=\left(2x-y\right)^2+y^2+1\ge1\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y=0\\y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}\Rightarrow}}x=y=0\)
Vậy Bmin = 1 khi và chỉ khi x = y = 0
\(A=\left(x+y\right).\left(x^2-xy+y^2\right)-\left(x-y\right).\left(x^2+xy+y^2\right)=\left(x^3+y^3\right)-\left(x^3-y^3\right)=2y^3\)
=> Biểu thức A phụ thuộc vào giá trị của y
\(\left(x-1\right)^3+3x.\left(x-4\right)+1=0\Leftrightarrow x^3-3x^2+3x-1+3x^2-12x+1=0\)
\(\Leftrightarrow x^3-9x=0\Leftrightarrow x.\left(x^2-9\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm3\end{cases}}}\)