Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b) Ta có: \(P=\dfrac{2}{x^4-1}-\dfrac{1}{1-x^2}\)
\(=\dfrac{2}{\left(x^2-1\right)\left(x^2+1\right)}+\dfrac{1}{x^2-1}\)
\(=\dfrac{2+x^2-1}{\left(x^2-1\right)\left(x^2+1\right)}\)
\(=\dfrac{x^2+1}{\left(x^2-1\right)\left(x^2+1\right)}\)
\(=\dfrac{1}{x^2-1}\)
a) Phân thức B xác định \(\Leftrightarrow\hept{\begin{cases}2x-2\ne0\\x^2-1\ne0\\2x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne\left\{\pm1\right\}\\x\ne-1\end{cases}\Leftrightarrow}x\ne\left\{\pm1\right\}}\)
b) \(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\cdot\frac{4x^2-4}{5}\)
\(B=\left[\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\frac{3\cdot2}{2\left(x-1\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right]\cdot\frac{\left(2x\right)^2-2^2}{5}\)
\(B=\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\cdot\frac{\left(2x-2\right)\left(2x+2\right)}{5}\)
\(B=\frac{10\cdot2\left(x-1\right)\cdot2\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)\cdot5}\)
\(B=\frac{40\left(x-1\right)\left(x+1\right)}{10\left(x-1\right)\left(x+1\right)}\)
\(B=4\)
Vậy với mọi giá trị của x thì B luôn bằng 4
Vậy giá trị của B không phụ thuộc vào biến ( đpcm )
\(Giải:\)
\(ĐKXĐ:x\ne\pm1\)
\(B=\left[\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right]=\left[\frac{x+1}{2x-2}+\frac{12}{4x^2-4}-\frac{x+3}{2x+2}\right]\)
\(=\left[\frac{x+1}{2x-2}+\frac{12}{\left(2x+2\right)\left(2x-2\right)}-\frac{x+3}{2x+2}\right]\)
\(=\left[\frac{\left(x+1\right)\left(2x+2\right)}{\left(2x+2\right)\left(2x-2\right)}+\frac{12}{\left(2x+2\right)\left(2x-2\right)}-\frac{\left(x+3\right)\left(2x-2\right)}{\left(2x-2\right)\left(2x+2\right)}\right]\)
\(=\frac{2x^2+4x+14-2x^2+2x-6x+6}{\left(2x-2\right)\left(2x+2\right)}\)
\(=\frac{6}{\left(2x-2\right)\left(2x+2\right)}\)
a)ĐKXĐ:
\(x+1\ne0\Leftrightarrow x\ne-1\)
\(x-1\ne0\Leftrightarrow x\ne1\)
b) \(A=\left(\dfrac{x}{x+1}+\dfrac{1}{x-1}\right):\left(\dfrac{2x+2}{x-1}-\dfrac{4x}{x^2-1}\right)\)
\(=\left[\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}\right]:\left[\dfrac{2\left(x+1\right)}{x-1}-\dfrac{4x}{x^2-1}\right]\)
\(=\left[\dfrac{x\left(x-1\right)+\left(x+1\right)}{x^2-1}\right]:\left[\dfrac{2\left(x+1\right)^2}{x^2-1}-\dfrac{4x}{x^2-1}\right]\)
\(=\left(\dfrac{x^2-x+x+1}{x^2-1}\right):\left(\dfrac{2\left(x^2+2x+1\right)-4x}{x^2-1}\right)\)
\(=\dfrac{x^2+1}{x^2-1}:\left(\dfrac{2x^2+4x+2-4x}{x^2-1}\right)\)
\(=\dfrac{x^2+1}{x^2-1}:\dfrac{2x^2+2}{x^2-1}\)
\(=\dfrac{x^2+1}{x^2-1}.\dfrac{x^2-1}{2x^2+2}\)
\(=\dfrac{x^2+1}{x^2-1}.\dfrac{x^2-1}{2\left(x^2+1\right)}\)
\(=\dfrac{1}{2}\)
Vậy với \(x\ne\pm1\) thì A không phụ thuộc vào biến x
\(a,Đkxđ:x\ne\pm2\)
\(A=\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}\)
\(=\frac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{\left(x+1\right)^2}{x^2-4}\)
b, Ta có: \(\left(x-2\right)\left(x+2\right)< 0;\forall-2< 2< 2;x\ne-1\)
Mà: \(\left(x+1\right)^2>0\left(\forall x\ne-1\right)\)
\(\Rightarrow\frac{\left(x+1\right)^2}{\left(x+2\right)\left(x-2\right)}< 0;\forall-2< x< 2;x\ne-1\)
Vậy ............
a) 2x−2=2(x−1)≠02x−2=2(x−1)≠0 khi x−1≠0x−1≠0 hay x≠1x≠1
x2−1=(x−1)(x+1)≠0x2−1=(x−1)(x+1)≠0 khi x−1≠0x−1≠0 và x+1≠0x+1≠0
hay x≠1x≠1 và x≠−1x≠−1
2x+2=2(x+1)≠02x+2=2(x+1)≠0 khi x+1≠0x+1≠0 hay x≠−1x≠−1
Do đó điều kiện để giá trị của biểu thức được xác định là x≠−1,x≠1x≠−1,x≠1
b) Để chứng minh biểu thức không phục thuộc vào biến x ta phải chứng tỏ rằng có thể biến đổi biểu thức này thành một hằng số.
Thật vậy:(x+12x−2+3x2−1−x+32x+2).4x
a, \(2x-2\ne0\) khi \(2x\ne2\Leftrightarrow x\ne1\)
\(x^2-1=\left(x+1\right)\left(x-1\right)\ne0\) khi \(x+1\ne0\) và \(x-1\Leftrightarrow x\ne-1\) và \(x\ne1\)
\(2x+2=2\left(x+1\right)\ne0\) khi \(x\ne-1\)
điều kiên của x để giá trị của biểu thức được xác định là : \(x\ne-1\) và \(x\ne1\)
b, \(\left(\dfrac{x+1}{2x-2}\dfrac{3}{x^2-1}-\dfrac{x+3}{2x+2}\right).\dfrac{4x^2-4}{5}\)
= \(\left[\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{\left(x+1\right)\left(x-1\right)}+\dfrac{-\left(x+3\right)}{2\left(x+1\right)}\right].\dfrac{4\left(x^2-1\right)}{5}\)
=\(\dfrac{\left(x+1\right)\left(x+1\right)+3.2-\left(x+3\right)\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}.\dfrac{4\left(x+1\right)\left(x-1\right)}{5}\)
= \(\dfrac{x^2+2x+1+6-x^2+x-3x+3}{2\left(x+1\right)\left(x-1\right)}.\dfrac{4\left(x+1\right)\left(x-1\right)}{5}\)
= \(\dfrac{10}{2\left(x+1\right)\left(x-1\right)}.\dfrac{4\left(x+1\right)\left(x-1\right)}{5}\)
= \(\dfrac{40\left(x+1\right)\left(x-1\right)}{10\left(x+1\right)\left(x-1\right)}\)
Vậy giá trị biểu thức được xác định thì nó không phụ thuộc vào giá trị của biến X
a) Ta có: x4 - 1 = (x2 + 1)(x2-1), trong đó : x2 + 1 > 0, với mọi x.
Vậy điều kiện : x2 – 1 ≠ 0
x2 – 1 = (x – 1)(x + 1) ≠ 0 ⇒ x ≠ ±1
Do x2 + 1 > 0 với mọi x nên P < 0 với mọi x ≠ ±1
a,ĐK: \(\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)
b, \(A=\left(\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)
\(=\frac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\frac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)
\(=\frac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\frac{3x\left(x+3\right)}{-x^2+3x-9}=\frac{-3}{x-3}\)
c, Với x = 4 thỏa mãn ĐKXĐ thì
\(A=\frac{-3}{4-3}=-3\)
d, \(A\in Z\Rightarrow-3⋮\left(x-3\right)\)
\(\Rightarrow x-3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\Rightarrow x\in\left\{0;2;4;6\right\}\)
Mà \(x\ne0\Rightarrow x\in\left\{2;4;6\right\}\)
điều kiện của x để gtrị của biểu thức đc xác định
=>\(2x+10\ne0;x\ne0:2x\left(x+5\right)\ne0\)
\(2x+5\ne0;x\ne0\)
=>\(x\ne-5;x\ne0\)
vậy đkxđ là \(x\ne-5;x\ne0\)
rút gon giống với bạn nguyen thuy hoa đến \(\dfrac{x-1}{2}\)
b,để bt =1=>\(\dfrac{x-1}{2}=1\)
=>x-1=2
=>x=3 thỏa mãn đkxđ
c,d giống như trên
Lời giải:
a. ĐKXĐ: \(\left\{\begin{matrix} x^4-1\neq 0\\ 1-x^2\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (1-x^2)(1+x^2)\neq 0\\ 1-x^2\neq 0\end{matrix}\right.\)
\(\Leftrightarrow 1-x^2\neq 0\) (do \(1+x^2>0\) với mọi x)
\(\Leftrightarrow (1-x)(1+x)\neq 0\Leftrightarrow x\neq \pm 1\)
b.
\(P=\frac{2}{(x^2-1)(x^2+1)}+\frac{1}{x^2-1}=\frac{2}{(x^2-1)(x^2+1)}+\frac{x^2+1}{(x^2-1)(x^2+1)}=\frac{x^2+3}{(x^2-1)(x^2+1)}\)
$P$ vẫn nhận giá trị dương với $x=3,4,5,...$ nên bạn xem lại đề.
a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)