K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 2: Cho biểu thức:1) Tìm điều kiện của x để biểu thức A có nghĩa .2) Rút gọn biểu thức A .3) Giải phương trình theo x khi A = -2 .Câu 3: Cho biểu thức:a) Với những giá trị nào của a thì A xác định.b) Rút gọn biểu thức A .c) Với những giá trị nguyên nào của a thì A có giá trị nguyên .Câu 4:a) Rút gọn biểu thức:b) Chứng minh rằng 0 ≤ C < 1Câu 5: Cho biểu thứca) Rút gọn Q.b) Tính giá trị...
Đọc tiếp

Câu 2: Cho biểu thức:

1) Tìm điều kiện của x để biểu thức A có nghĩa .

2) Rút gọn biểu thức A .

3) Giải phương trình theo x khi A = -2 .

Câu 3: Cho biểu thức:

a) Với những giá trị nào của a thì A xác định.

b) Rút gọn biểu thức A .

c) Với những giá trị nguyên nào của a thì A có giá trị nguyên .

Câu 4:

a) Rút gọn biểu thức:

b) Chứng minh rằng 0 ≤ C < 1

Câu 5: Cho biểu thức

a) Rút gọn Q.

b) Tính giá trị của Q khi a = 3 + 2√2.

c) Tìm các giá trị của Q sao cho Q < 0.

Câu 6: Cho biểu thức

a) Tìm điều kiện của x để P có nghĩa.

b) Rút gọn P.

c) Tìm các giá trị của x để P = 6/5.

Câu 7: Cho biểu thức

a) Tìm điều kiện của x để P có nghĩa.

b) Rút gọn P.

c) Tím các giá trị nguyên của x để P có giá trị nguyên.

Câu 8: Cho biểu thức

a) Rút gọn P.

b) Tìm các giá trị nguyên của x để P có giá trị nguyên.

c) Tìm GTNN của P và giá trị tương ứng của x.

Câu 9: Cho biểu thức

a) Rút gọn P.

b) Tìm các giá trị của x để P > 0.

c) Tính giá trị của P khi x = 7 - 4√3.

d) Tìm GTLN của P và giá trị tương ứng của x.

2
27 tháng 4 2018

sora béo chưa ghi biểu thức

27 tháng 4 2018

Biểu thức nào hả bn ?

1 tháng 11 2022

\(A=\sqrt{x^4+4x^3+6x^2+4x+2}+\sqrt{y^4-8y^3+24y^2-32y+17}\)

\(=\sqrt{\left(x+1\right)^4+1}+\sqrt{\left(y-2\right)^4+1}\)

Đặt \(\hept{\begin{cases}x+1=u\\y-2=v\end{cases}}\Rightarrow A=\sqrt{u^4+1}+\sqrt{v^4+1}\)(với \(u,v\inℝ\))

Điều kiện đã cho ban đầu trở thành \(\left(u+1\right)\left(v+1\right)=\frac{9}{4}\)

\(\Leftrightarrow uv+u+v+1=\frac{9}{4}\Leftrightarrow uv+u+v=\frac{5}{4}\)

Ta có: \(\hept{\begin{cases}\left(2u-1\right)^2\ge0\forall u\inℝ\\\left(2v-1\right)^2\ge0\forall v\inℝ\end{cases}}\Leftrightarrow\hept{\begin{cases}4u^2-4u+1\ge0\\4v^2-4v+1\ge0\end{cases}}\forall u,v\inℝ\)

\(\Rightarrow\hept{\begin{cases}4u^2+1\ge4u\\4v^2+1\ge4v\end{cases}}\Rightarrow u^2+v^2\ge u+v-\frac{1}{2}\forall u,v\inℝ\)(*)

và \(\left(u-v\right)^2\ge0\forall u,v\inℝ\Leftrightarrow u^2-2uv+v^2\ge0\forall u,v\inℝ\)

\(\Rightarrow u^2+v^2\ge2uv\forall u,v\inℝ\Leftrightarrow\frac{1}{2}\left(u^2+v^2\right)\ge uv\forall u,v\inℝ\)(**)

Cộng theo vế của (*) và (**), ta được: \(\frac{3}{2}\left(u^2+v^2\right)\ge uv+u+v-\frac{1}{2}=\frac{5}{4}-\frac{1}{2}=\frac{3}{4}\)

\(\Rightarrow u^2+v^2\ge\frac{1}{2}\)(**

Áp dụng bất đẳng thức Minkowski, ta được:

\(A=\sqrt{u^4+1}+\sqrt{v^4+1}\ge\sqrt{\left(u^2+v^2\right)^2+\left(1+1\right)^2}\)

\(=\sqrt{\left(u^2+v^2\right)^2+4}\ge\sqrt{\left(\frac{1}{2}\right)^2+4}=\sqrt{\frac{1}{4}+4}=\frac{\sqrt{17}}{2}\)

Đẳng thức xảy ra khi \(u=v=\frac{1}{2}\Leftrightarrow x=-\frac{1}{2};y=\frac{5}{2}\)

Vậy GTNN của A là \(\frac{\sqrt{17}}{2}\)đạt được khi \(x=-\frac{1}{2};y=\frac{5}{2}\)

24 tháng 2 2020

Đặt \(a=2+x;b=y-1\) thì \(ab=\frac{9}{4}\)

Thì \(\sqrt{x^4+4x^3+6x^2+4x+2}=\sqrt{a^4-4a^3+6a^2-4a+2}\)

và \(\sqrt{y^4-8y^3+24y^2-32y+17}=\sqrt{b^4-4b^3+6b^2-4b+2}\) (cái này dùng phương pháp đồng nhất hệ số là xong)

Vậy ta tìm Min \(A=\sqrt{a^4-4a^3+6a^2-4a+2}+\sqrt{b^4-4b^3+6b^2-4b+2}\)

\(=\sqrt{\left(a^4-4a^3+4a^2\right)+2\left(a^2-2a+1\right)}+\sqrt{\left(b^4-4b^3+4b^2\right)+2\left(b^2-2b+1\right)}\)

\(=\sqrt{\left(a^2-2a\right)^2+\left[\sqrt{2}\left(a-1\right)\right]^2}+\sqrt{\left(b^2-2b\right)^2+\left[\sqrt{2}\left(b-1\right)\right]^2}\)

\(\ge\sqrt{\left(a^2+b^2-2a-2b\right)^2+2\left(a+b-2\right)^2}\)

\(\ge\sqrt{\left[\frac{\left(a+b\right)^2}{2}-2\left(a+b\right)\right]^2+2\left(a+b-2\right)^2}\)

\(=\sqrt{\left(\frac{t^2}{2}-2t\right)^2+2\left(t-2\right)^2}\left(t=a+b\ge2\sqrt{ab}=3\right)\)

\(=\sqrt{\frac{1}{4}\left(t-1\right)\left(t-3\right)\left(t^2-4t+5\right)+\frac{17}{4}}\ge\frac{\sqrt{17}}{2}\)

Trình bày hơi lủng củng, sr.

22 tháng 3 2017

Có : A= 1/(x^3+y^3)+1/xy
=> A= 1/(x+y)(x^2+xy+y^2) +1/xy
=> A=1/(x^2+xy+y^2)+1/xy (vì x+y=1)
Áp dụng bđt : 1/a+1/b >= 4/(a+b)
=> 1/(x^2+xy+y^2) +1/xy >= 1/(x+y)^2
=> A >=1
Đẳng thức xảy ra <=> x=y và x+y=1 => x=y=0,5
Vậy Amin=1 <=> x=y=0,5

22 tháng 3 2017

Nhầm Amin =4 :v

16 tháng 6 2020

Ai giúp em với ạ

16 tháng 6 2020

1. Ta có: \(x^2-2xy-x+y+3=0\)

<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)

<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)

<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)

<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)

Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)

Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)

Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)

Kết luận:...

22 tháng 12 2016

a) \(P=\left(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}-\frac{2}{4-x}\right):\frac{\sqrt{x}+3}{\sqrt{x}-2}\left(ĐK:x\ge0;x\ne4\right)\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)+\sqrt{x}-2+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}-2}{\sqrt{x}+3}\)

\(=\frac{x+2\sqrt{x}+\sqrt{x}}{\sqrt{x}+2}\cdot\frac{1}{\sqrt{x}+3}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\sqrt{x}+2}\cdot\frac{1}{\sqrt{x}+3}=\frac{\sqrt{x}}{\sqrt{x}+2}\)

b) Vì: \(\sqrt{x}+4>0,\forall x\inĐK\)

=> \(2\sqrt{x}+4>\sqrt{x}\)

=> \(\frac{\sqrt{x}}{2\sqrt{x}+4}< 0\)

=> \(\frac{\sqrt{x}}{\sqrt{x}+2}< 2\)

=>đpcm