K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2016

Ta có : A = \(\frac{1}{\frac{2\cdot3}{2}}+\frac{1}{\frac{3\cdot4}{2}}+.....+\frac{1}{\frac{n\left(n+1\right)}{2}}\)

=\(\frac{2}{3\cdot3}+\frac{2}{3\cdot4}+.....+\frac{2}{n\left(n+1\right)}=2\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+.....+\frac{1}{n\left(n+1\right)}\right)=2\left(\frac{1}{2}-\frac{1}{n+1}\right)=1-\frac{2}{n+1}\)

=> A < 1 =>A<2 với mọi n

Câu sau mình không hiểu đề

13 tháng 12 2015

Em mới học lớp 5 thôi ạ!

1 tháng 8 2020

b) \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)

=\(3^{n+1}.2.5+2^{n+2}.3\)=\(2.3\left(3^n+2^{n+1}\right)⋮6\)

=> dpcm

1 tháng 8 2020

a) A = 2 + 22 + 23 + ... + 2100

=> 2A = 22 + 23 + 24 + ... + 2101

Lấy 2A trừ A theo vế ta có 

2A - A = (22 + 23 + 24 + ... + 2101) - (2 + 22 + 23 + ... + 2100)

  => A = 2201 - 2

Sửa đề 2(A + 2) = 22x

=> 2(2201 - 2 + 2) = 22x

=> 2202 = 22x

=> (22)101 = (22)x

=> x = 101 

3 tháng 2 2016

\(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^n}\)

\(\Rightarrow2S=2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{n-1}}\)

\(\Rightarrow2S-S=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{n-1}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^n}\right)=2-\frac{1}{2^n}\)

\(\Rightarrow S=2-\frac{1}{2^n}>1,999=\frac{1999}{1000}\Rightarrow\frac{1}{2^n}>2-\frac{1999}{1000}=\frac{1}{1000}\Rightarrow\frac{1}{2^n}>\frac{1}{1000}\)

=>2n>1000

mà n là số nguyên dương nhỏ nhất=>n=10 (210=1024>1000)

vậy n=10