K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2016

1) \(M=\frac{x-1}{x-5}=\frac{\left(x-5\right)+4}{x-5}=1+\frac{4}{x-5}\)

Vậy để M nguyên thì \(x-5\inƯ\left(4\right)\)

Mà Ư(4)={1;-1;2;-2;4;-4}

Ta có bảng sau:
 

x-51-12-24-4
x647391

Vậy x={1;3;4;6;7;9}

2) Để M âm

\(\Leftrightarrow\)\(\frac{x-1}{x-5}< 0\)

\(\Leftrightarrow\begin{cases}x-1>0\\x-5< 0\end{cases}\) hoặc \(\begin{cases}x-1< 0\\x-5>0\end{cases}\)

\(\Leftrightarrow1< x< 5\)

2 tháng 10 2016

hố hố..................................................................

29 tháng 12 2016

a) x khác 2

b) với x<2

c) \(A=\frac{x\left(x-2\right)+2\left(x-2\right)+7}{x-2}=x+2+\frac{7}{x-2}\)

x-2=(-7,-1,1,7)

x=(-5,1,3,9)

29 tháng 12 2016

a) đk kiện xác định là mẫu khác 0

=> x-2 khác o=> x khác 2

b)

tử số luôn dương mọi x

vậy để A âm thì mẫu số phải (-)

=> x-2<0=> x<2 

c)thêm bớt sao cho tử là các số hạng chia hết cho mẫu

cụ thể

x^2-2x+2x-4+4+3

ghép

x(x-2)+2(x-2)+7 

như vậy chỉ còn mỗi số 7 không chia hết cho x-2

vậy x-2 là ước của 7=(+-1,+-7) ok

25 tháng 7 2016

\(1.\frac{x-7}{2}< 0\)

\(\Leftrightarrow\frac{x-7}{2}.2< 0.2\)

\(\Leftrightarrow x-7< 0\Leftrightarrow x< 7\)

\(S=\left\{xlx< 7\right\}\)

2)\(\)Đề biểu thức sau nhân giá trị âm thì :

\(\frac{x+3}{x-5}< 0\Leftrightarrow x+3< 0\Leftrightarrow x< 3\left(Đk:x\ne5\right)\)

\(S=\left\{xlx< 3\right\}\)

3.Giá trị của x thuộc Z để biểu thức sau nhận giá trị dương:

\(x^2+x\ge0\)

\(\Leftrightarrow x\left(x+1\right)\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}x\ge0\\x+1\ge0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\ge0\\x\ge-1\end{cases}}}\)

\(S=\left\{xlx\ge-1\right\}\)

4 tháng 2 2019

Ta có: \(A=\frac{\sqrt{x}-3}{\sqrt{x}+2}=\frac{\sqrt{x}+2-5}{\sqrt{x}+2}=1-\frac{5}{\sqrt{x}+2}=-1\)

a)Thay x = 1/4 vào A,ta có \(A=1-\frac{5}{\sqrt{x}+2}=1-\frac{5}{\sqrt{\frac{1}{4}}+2}=-1\)

b) Theo kết quả câu a) khi x = 1/4  thì A = -1

Vậy x = 1/4

c)Để A nhận giá trị nguyên thì \(\frac{5}{\sqrt{x}+2}\) nguyên.

Hay \(\sqrt{x}+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Đến đây bí.

28 tháng 6 2016

\(B=\frac{3\left(x+2\right)-4}{x+2}\)\(=3-\frac{4}{x+2}\)

Để B nhận giá trị nguyên thì \(x-2\inƯ_{\left(4\right)}=\left\{\pm1;\pm2;\pm4\right\}\)

Với \(x+2=-4\Rightarrow x=-6\)

      \(x+2=-2\Rightarrow x=-4\)

      \(x+2=-1\Rightarrow x=-3\)

      \(x+2=1\Rightarrow x=-1\)

      \(x+2=2\Rightarrow x=0\)

      \(x+2=4\Rightarrow x=2\)

28 tháng 6 2016

ta có : \(\frac{6x+2}{x+2}=\frac{6}{x+2}+1\)

Để B nguyên thì \(6⋮x+2\) \(\Rightarrow\left(x+2\right)\inƯ\left(6\right)=\left\{-1;-2;-3;-6;1;2;3;6\right\}\)

ta có :
 

x+2x
-1-3
-2-4
-3-5
-6-8
1-1
21
32
65

 

8 tháng 11 2017

a) Ta có: \(M=\frac{2x+5}{x+1}=\frac{2\left(x+1\right)+3}{x+1}=\frac{2x+2+3}{x+1}\)

Vì \(2x+2⋮\left(x+1\right)\Rightarrow3⋮\left(x+1\right)\)

Nên \(x+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow x=\left\{0;-2;2;-4\right\}\)

b) Tương tự

24 tháng 6 2020

Ta có: \(N=\frac{x+2}{x-1}=\frac{x-1+3}{x-1}=1+\frac{3}{x-1}\)

Để M,N đồng thời có giá trị nguyên thì \(2⋮\left(x+3\right)\)và \(3⋮\left(x-1\right)\)

hay \(x+3\inƯ\left(2\right)\)và \(x-1\inƯ\left(3\right)\)

Ta có bảng:

x+31-12-2
x-2-4-1-5
x-11-13-3
x204

-2

Vay \(x\in\left\{-5;-4;-2;-1;0;2;4\right\}\)

19 tháng 5 2021

a) Ta có: \(M=\dfrac{8x+1}{4x-5}=\dfrac{8x-10+11}{4x-5}=\dfrac{2\left(x-5\right)+11}{4x-5}=2+\dfrac{11}{4x-5}\)

Để M nhận giá trị nguyên thì \(2+\dfrac{11}{4x-5}\) nhận giá trị nguyên

\(\Rightarrow\dfrac{11}{4x-5}\) nhận giá trị nguyên

\(\Rightarrow11⋮4x-5\)

Vì \(x\in Z\) nên \(4x-5\in Z\)

\(\Rightarrow4x-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

\(\Rightarrow x\in\left\{1;\pm1,5;4\right\}\)

Vậy \(x\in\left\{1;4\right\}\) thỏa mãn \(x\in Z\).

b) Ta có: \(A=\dfrac{5}{4-x}\). ĐK: \(x\ne4\)

Nếu 4 - x < 0 thì x > 4 \(\Rightarrow A>0\)

       4 - x > 0 thì x < 4 \(\Rightarrow A< 0\)

Để A đạt GTLN thì 4 - x là số nguyên dương nhỏ nhất

\(\Rightarrow4-x=1\Rightarrow x=3\)

\(\Rightarrow A=\dfrac{5}{4-3}=5\)

Vậy MaxA = 5 tại x = 3

c) \(B=\dfrac{8-x}{x-3}\). ĐK: \(x\ne3\).

Ta có: \(B=\dfrac{8-x}{x-3}=\dfrac{-\left(x-8\right)}{x-3}=\dfrac{-\left(x-3\right)+5}{x-3}=\dfrac{5}{x-3}-1\)

Để B đạt giá trị nhỏ nhất thì \(\dfrac{5}{x-3}-1\) nhỏ nhất

\(\Rightarrow\dfrac{5}{x-3}\) nhỏ nhất

Nếu x - 3 > 0 thì x > 3 \(\Rightarrow\dfrac{5}{x-3}>0\) 

       x - 3 < 0 thì x < 3 \(\Rightarrow\dfrac{5}{x-3}< 0\)

Để \(\dfrac{5}{x-3}\) nhỏ nhất thì x - 3 là số nguyên âm lớn nhất

\(\Rightarrow x-3=-1\Rightarrow x=2\)

\(\Rightarrow B=\dfrac{8-2}{2-3}=-6\)

Vậy MaxB = -6 tại x = 2.

19 tháng 5 2021

Mình làm sai câu a...

Ta có: \(M=\dfrac{8x+1}{4x-1}=\dfrac{8x-2+3}{4x-1}=\dfrac{2\left(4x-1\right)+3}{4x-1}=2+\dfrac{3}{4x-1}\)

Để M nhận giá trị nguyên thì \(2+\dfrac{3}{4x-1}\) nhận giá trị nguyên

\(\Rightarrow\dfrac{3}{4x-1}\) nhận giá trị nguyên

Vì \(4x-1\in Z\) nên \(4x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow x\in\left\{\pm0,5;0;1\right\}\)

Vậy \(x\in\left\{0;1\right\}\) thỏa mãn \(x\in Z\).