Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x khác 2
b) với x<2
c) \(A=\frac{x\left(x-2\right)+2\left(x-2\right)+7}{x-2}=x+2+\frac{7}{x-2}\)
x-2=(-7,-1,1,7)
x=(-5,1,3,9)
a) đk kiện xác định là mẫu khác 0
=> x-2 khác o=> x khác 2
b)
tử số luôn dương mọi x
vậy để A âm thì mẫu số phải (-)
=> x-2<0=> x<2
c)thêm bớt sao cho tử là các số hạng chia hết cho mẫu
cụ thể
x^2-2x+2x-4+4+3
ghép
x(x-2)+2(x-2)+7
như vậy chỉ còn mỗi số 7 không chia hết cho x-2
vậy x-2 là ước của 7=(+-1,+-7) ok
a. Để \(\frac{x+2}{x-1}\) có nghĩa thì \(x-1\ne0\Leftrightarrow x\ne1\)
b. Thay số vào rồi tính là ra nhé bạn.
c. \(f\left(x\right)=\frac{1}{4}\)
\(\frac{x+2}{x-1}=\frac{1}{4}\)
4(x + 2) = x - 1
4x + 8 = x - 1
4x - x = -1 - 8
3x = -9
x = -3
d. \(f\left(x\right)\in Z\)
\(\Rightarrow\frac{x+2}{x-1}\in Z\)
\(\Rightarrow\frac{x-1+3}{x-1}\in Z\)
\(\Rightarrow1+\frac{3}{x-1}\in Z\)
\(\Rightarrow\frac{3}{x-1}\in Z\)
Để \(\frac{3}{x-1}\in Z\) thì \(3⋮x-1\Leftrightarrow x-1\inƯ\left(3\right)=\left\{\text{±}1;\text{±}3\right\}\)
Ta có bảng sau:
x - 1 | -1 | -3 | 1 | 3 |
x | 0 | -2 | 2 | 4 |
Vậy để f(x) có giá trị nguyên thì \(x\in\left\{-2;0;2;4\right\}\)
e. f(x) > 0
\(\Leftrightarrow\frac{x+2}{x-1}>0\)
\(\Rightarrow1+\frac{3}{x-1}>0\)
\(\Rightarrow\frac{3}{x-1}>-1\)
\(\Rightarrow x-1>-3\)
\(\Rightarrow x>-2\)
Ta có : \(f\left(x\right)=\left|x-1\right|-\left(2x-5\right)\)
Xét 2 TH:
+) Nếu \(\left|x-1\right|=x-1\)
=> \(f\left(x\right)=x-1-2x+5\)
=> \(f\left(x\right)=4-x\)
+) Nếu \(\left|x-1\right|=1-x\)
=> \(f\left(x\right)=1-x-2x+5\)
=> \(f\left(x\right)=6-3x\)
Vậy...
b) \(f\left(5\right)=\left|5-1\right|-\left(2.5-5\right)\)
=> \(f\left(5\right)=4-2=2\)
Vậy...
c) \(f\left(x\right)=0\)
=> \(\left|x-1\right|-\left(2x-5\right)=0\)
=> \(\left|x-1\right|=2x-5\)
Vì \(\left|x-1\right|\ge0\forall x\)
=> \(2x-5\ge0\)
=> \(x\ge\frac{5}{2}\)
=> \(x-1\ge\frac{5}{2}-1=\frac{3}{2}>0\)
=> \(\left|x-1\right|=x-1\)
=> \(x-1-2x+5=0\)
=> \(4-x=0\)
=> \(x=4\)
a: ĐKXĐ: x<>-2/3
b: F=0
=>8-2x=0
=>x=4
d: F<0
=>(2x-8)/(3x+2)>0
=>x>4 hoặc x<-2/3