Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d, A nguyên dương <=> \(\frac{-4}{2+x}\) nguyên dương
<=> \(\begin{cases}2+x< 0\\2+x\inƯ4\end{cases}\)
<=> 2 + x \(\in\) {-1; -2; -4}
Thay 2 + x = -1 => x = -3
2 + x = -2 => x = -4
2 + x = -4 => x = -6
Vây x \(\in\left\{-3;-4;-6\right\}\)
a) x khác 0 ; 2 ;-2
\(A=\left(\frac{1}{x-2}-\frac{2x}{4-x^2}+\frac{1}{2+x}\right).\left(\frac{2}{x}-1\right)\)
\(=\left(\frac{x+2}{\left(x-2\right)\left(x+2\right)}+\frac{2x}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right).\frac{2-x}{x}\)
\(=\frac{4x}{\left(x-2\right)\left(x+2\right)}.\frac{2-x}{x}=-\frac{4}{x+2}\)
b) Ta có: 2x2+x=0
<=>x.(2x+1)=0
<=>x=0 (loại) hoặc x=-1/2
Khi x=-1/2 => A=\(-\frac{4}{-\frac{1}{2}+2}=-\frac{8}{3}\)
c)Để A=1/4
Thì: \(-\frac{4}{x+2}=\frac{1}{4}\Rightarrow x+2=-16\Leftrightarrow x=-18\)(nhận)
Vậy x=-18 thì A=1/4
d)Để A nguyên dương thì x+2 thuộc ước âm của 4
=>x+2=-1 hoặc x+2=-2 ; hoặc x+2=-4
=>x=-3 hoặc x=-4 hoặc x=-6
Vậy x=-3 hoặc x=-4 hoặc x=-6 thì A nguyên dương
a) ĐKXĐ : \(x\ne0\);\(x\ne2;-2\)
A=\(\left(\frac{1}{x-2}-\frac{2x}{4-x^2}+\frac{1}{2+x}\right).\left(\frac{2}{x}-1\right)\)
=\(\left(\frac{1}{x-2}+\frac{2x}{x^2-4}+\frac{1}{x+2}\right).\left(\frac{2}{x}-\frac{x}{x}\right)\)
=\(\frac{x+2+2x+x-2}{\left(x+2\right)\left(x-2\right)}.\frac{2-x}{x}\)
=\(\frac{4x}{\left(x+2\right)\left(x-2\right)}.\frac{-\left(x-2\right)}{x}\)
= \(\frac{-4}{x+2}\)
b) Ta có : \(2x^2+x=0\)
\(\Leftrightarrow x\left(2x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=\frac{-1}{2}\end{cases}}\left(tm\right)\)
Để A = -1/2 thì
\(\Leftrightarrow\frac{-4}{x+2}=\frac{-1}{2}\)
\(\Leftrightarrow-\left(x+2\right)=-8\)
\(\Leftrightarrow x+2=8\)
\(\Leftrightarrow x=6\)
c) Để A =0,5 thì
\(\frac{-4}{x+2}=0,5\)
\(\Leftrightarrow-8=x+2\)
\(\Leftrightarrow x=-10\)
d) Để A \(\inℤ\)thì
\(-4⋮x+2\)
\(\Leftrightarrow x+2\inƯ\left(-4\right)\)
\(\Leftrightarrow x+2\in\left\{1;2;4;-1;-2;-4\right\}\)
Lập bảng giá trị
x+2 | -1 | 1 | -2 | 2 | -4 | 4 |
x | -3 | -1 | -4 | 0 | -6 | 2 |
Mà \(x\ne0\)và \(x\ne2;-2\)
\(\Rightarrow x\in\left\{-1;-3;-4;-6\right\}\)
d) \(A>0\Leftrightarrow\frac{-1}{x-2}>0\)
\(\Leftrightarrow x-2< 0\) ( vì \(-1< 0\))
\(\Leftrightarrow x< 2\)
\(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(A=\)\(\left[\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right]\)
\(:\left[\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right]\)
\(A=\frac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}:\left[\frac{x^2-4+10-x^2}{x+2}\right]\)
\(A=\frac{-6}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)
\(A=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}\)
\(A=\frac{-1}{x-2}\)
1. A = -4 phần x+2
2. 2x^2 + x = 0 => x = 0 hoặc x = -1/2
Với x = 0 thì A = -2
Với x = -1/2 thì A = -8/3
3. A = 1/2 => -4 phần x + 2 = 1/2
<=> -8 = x + 2
<=> x = -10
4. A nguyên dương => A > 0
=> -4 phần x + 2 > 0
Do -4 < 0 nên -4 phần x + 2 > 0 khi x + 2 < 0
=> x < -2
a)\(A=\left(\frac{1}{x-2}-\frac{2x}{4-x^2}+\frac{1}{2+x}\right)\left(\frac{2}{x}-1\right)\)
\(=\left(\frac{1}{x-2}+\frac{2x}{x^2-4}+\frac{1}{x+2}\right)\left(\frac{2}{x}-1\right)\)
\(=\left(\frac{1}{x-2}+\frac{2x}{\left(x-2\right)\left(x+2\right)}+\frac{1}{x+2}\right)\left(\frac{2}{x}-1\right)\)
\(=-\left(\frac{x+2+2x+x-2}{\left(x-2\right)\left(x+2\right)}\right)\left(\frac{x-2}{x}\right)\)
\(=-\left(\frac{4x}{x\left(x+2\right)}\right)\)
\(=\frac{-4}{x+2}\)