K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2021

a) \(A=\dfrac{3\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\dfrac{\sqrt{a}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\dfrac{3\sqrt{a}-3-\sqrt{a}-1-\sqrt{a}+3}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\dfrac{\sqrt{a}-1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\dfrac{1}{\sqrt{a}+1}\)

b) Với \(a=3-2\sqrt{2}\)(tmđk)

\(A=\dfrac{1}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\dfrac{\sqrt{a}-1}{a-1}\)

\(=\dfrac{\sqrt{3-2\sqrt{2}}-1}{3-2\sqrt{2}-1}=\dfrac{\sqrt{\left(\sqrt{2}-1\right)^2}-1}{2-2\sqrt{2}}=\dfrac{\left|\sqrt{2}-1\right|-1}{2-2\sqrt{2}}=\dfrac{\sqrt{2}-1-1}{2-2\sqrt{2}}=\dfrac{\sqrt{2}-2}{2-2\sqrt{2}}=\dfrac{\sqrt{2}\left(1-\sqrt{2}\right)}{2\left(1-\sqrt{2}\right)}=\dfrac{\sqrt{2}}{2}\)

18 tháng 5 2018

Câu c mk ko piết làm. Bạn Thoòng cảm

18 tháng 5 2018

Hàm số bậc nhất

2 tháng 10 2018

ko biet

Bài 1: 

a: \(B=\dfrac{\sqrt{x}+x+\sqrt{x}-x}{1-x}\cdot\dfrac{x-1}{3-\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\)

b: Để B=-1 thì \(2\sqrt{x}=-\sqrt{x}+3\)

=>3 căn x=3

=>căn x=1

hay x=1(loại)

4 tháng 7 2017

a. \(\dfrac{x^2-3}{x+\sqrt{3}}=\dfrac{\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)}{x+\sqrt{3}}=x-\sqrt{3}\)

24 tháng 10 2018

giải hộ

28 tháng 10 2022

Bài 2: 

a: =>25x=35^2=1225

=>x=49

b: \(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+\dfrac{4}{3}\cdot3\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

=>x+5=4

=>x=-1

8 tháng 1 2018

a) A=\(\dfrac{\sqrt{x}[\left(\sqrt{x}\right)^3-1]}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

A=\(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\) A=\(\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-1+2\sqrt{x}+2\)

A=\(x-\sqrt{x}+1\)

b) A=\(\dfrac{3}{4}\)

=> \(x-\sqrt{x}+1=\dfrac{3}{4}\)

\(x-\sqrt{x}+\dfrac{1}{4}=0\)

\(\left(\sqrt{x}-\dfrac{1}{2}\right)^2=0\)

=> \(\sqrt{x}=\dfrac{1}{2}\)

=> \(x=\dfrac{1}{4}\)

NV
4 tháng 1 2019

\(P=\left(\dfrac{1}{\sqrt{a}+1}-\dfrac{1}{\sqrt{a}\left(\sqrt{a}+1\right)}\right).\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}-1}\)

\(P=\left(\dfrac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}+1\right)}\right).\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)}\)

\(P=\dfrac{\sqrt{a}+1}{\sqrt{a}}\)

b/

\(a=2\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\)

\(a=\sqrt{3-\sqrt{5}}\left(6+2\sqrt{5}\right)\sqrt{2}\left(\sqrt{5}-1\right)\)

\(a=\sqrt{6-2\sqrt{5}}\left(6+2\sqrt{5}\right)\left(\sqrt{5}-1\right)=\sqrt{\left(\sqrt{5}-1\right)^2}\left(\sqrt{5}+1\right)^2\left(\sqrt{5}-1\right)\)

\(a=\left(\sqrt{5}+1\right)^2.\left(\sqrt{5}-1\right)^2\)

\(a=\left[\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)\right]^2=4^2=16\)

\(\Rightarrow P=\dfrac{\sqrt{a}+1}{\sqrt{a}}=\dfrac{\sqrt{16}+1}{\sqrt{16}}=\dfrac{4+1}{4}=\dfrac{5}{4}\)

AH
Akai Haruma
Giáo viên
14 tháng 5 2018

Lời giải:

a)

Ta có: \(\frac{1}{\sqrt{3}+2}+\frac{1}{\sqrt{3}-2}=\frac{\sqrt{3}-2+\sqrt{3}+2}{(\sqrt{3}+2)(\sqrt{3}-2)}=\frac{2\sqrt{3}}{3-4}=-2\sqrt{3}\)

Để \(B=\frac{1}{\sqrt{3}+2}+\frac{1}{\sqrt{3}-2}\Leftrightarrow \frac{2}{\sqrt{x}-2}=-2\sqrt{3}\)

\(\Leftrightarrow \frac{1}{\sqrt{x}-2}=-\sqrt{3}\)

\(\Leftrightarrow\sqrt{x}-2=\frac{-1}{\sqrt{3}}\)

\(\Leftrightarrow \sqrt{x}=2-\frac{1}{\sqrt{3}}\Rightarrow x=(2-\frac{1}{\sqrt{3}})^2=\frac{13-4\sqrt{3}}{3}\)

b)

ĐK: \(x\geq 0; x\neq 4\)

\(A=\frac{\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}=\frac{\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{(\sqrt{x}-2)(\sqrt{x}+2)}=\frac{\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}=\frac{2\sqrt{x}+2}{x-4}\)

\(P=\frac{B}{A}=\frac{2}{\sqrt{x}-2}:\frac{2(\sqrt{x}+1)}{x-4}=\frac{2(x-4)}{2(\sqrt{x}-2)(\sqrt{x}+1)}\)

\(=\frac{(\sqrt{x}+2)(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+1)}=\frac{\sqrt{x}+2}{\sqrt{x}+1}\)

 

 

AH
Akai Haruma
Giáo viên
14 tháng 5 2018

c) Thêm ĐK: \(x\geq 1\)

Từ biểu thức P vừa tìm được:

\(P(\sqrt{x}+1)-\sqrt{x}+2\sqrt{x-1}=2x-2\sqrt{2x}+4\)

\(\Leftrightarrow \frac{\sqrt{x}+2}{\sqrt{x}+1}.(\sqrt{x}+1)-\sqrt{x}+2\sqrt{x-1}=2x-2\sqrt{2x}+4\)

\(\Leftrightarrow \sqrt{x}+2-\sqrt{x}+2\sqrt{x-1}=2x-2\sqrt{2x}+4\)

\(\Leftrightarrow 2\sqrt{x-1}=2x-2\sqrt{2x}+2\)

\(\Leftrightarrow (\sqrt{x-1}-1)^2+(\sqrt{x}-\sqrt{2})^2=0\)

\((\sqrt{x-1}-1)^2, (\sqrt{x}-\sqrt{2})^2\geq 0, \forall x\in \text{ĐKXĐ}\)

\(\Rightarrow (\sqrt{x-1}-1)^2+(\sqrt{x}-\sqrt{2})^2\geq 0\). Dấu bằng xảy ra khi :

\(\left\{\begin{matrix} \sqrt{x-1}-1=0\\ \sqrt{x}-\sqrt{2}=0\end{matrix}\right.\Leftrightarrow x=2\) (thỏa mãn)

Vậy..........

a: \(A=\dfrac{3-\sqrt{x}-x-\sqrt{x}+x-\sqrt{x}}{x-1}\)

\(=\dfrac{3-3\sqrt{x}}{x-1}=\dfrac{-3}{\sqrt{x}+1}\)

b: Để A là số nguyên thì \(\sqrt{x}+1\in\left\{1;-1;3;-3\right\}\)

=>\(\sqrt{x}+1\in\left\{1;3\right\}\)

hay \(x\in\left\{0;4\right\}\)