K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2019

a) A= \(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{2}\right)\) (x ≥ 0; x ≠ 4)

= \(\left(\frac{x+2}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}-1\right)\cdot\sqrt{x}}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\right):\frac{\sqrt{x}-1}{2}\)

=\(\left(\frac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\right)\cdot\frac{2}{\sqrt{x}-1}\)

=\(\left(\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\right)\cdot\frac{2}{\sqrt{x}-1}\)

= \(\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\cdot\frac{2}{\sqrt{x}-1}\)

=\(\frac{2}{x+\sqrt{x}+1}\)

b) Ta có: x ≥ 0 ⇒ \(\sqrt{x}\) ≥ 0

⇒x+\(\sqrt{x}\)+1 ≥ 1 > 0

mà 2 > 0

⇒ A > 0 (1)

Ta có:

\(x+\sqrt{x}+1\) ≥ 1

\(\frac{1}{x+\sqrt{x}+1}\) ≤ 1

\(\frac{2}{x+\sqrt{x}+1}\) ≤ 2

⇒A ≤ 2 (2)

Từ (1) và (2) => 0 < A ≤ 2

3 tháng 4 2017

mình giải thế này

a)\(P=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right)\frac{\left(1-x\right)^2}{2}\)

\(P=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x+1}\right)^2}{2}\)

\(P=-\sqrt{x}.\left(\sqrt{x}-1\right)=-x+\sqrt{x}\)

b)\(0< x< 1\Rightarrow\sqrt{x}< 1\Rightarrow\sqrt{x}-1< 0\)

\(\Rightarrow-x\left(\sqrt{x}-1\right)>0\)vì \(x>0\)

xong rồi nhé :)

3 tháng 4 2017

Hình như kết quả rút gọn là  \(\sqrt{x}-x\)

4 tháng 8 2019

\(A=\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x}-1}\right)\)\(:\left(\frac{\sqrt{x}+2}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\sqrt{x}-2}\right)\)

\(=\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\)\(:\left(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{\left(\sqrt{x}-1-\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{\left(\sqrt{x}-4-\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{-3}\)\(=\frac{\sqrt{x}-2}{3\sqrt{x}}\)

\(b,A=0\Leftrightarrow\frac{\sqrt{x}-2}{3\sqrt{x}}=0\Leftrightarrow\sqrt{x}-2=0\)

Mà \(\sqrt{x}+2\ne0\)\(\Rightarrow\)không có giá trị nào  của x thỏa mãn \(A=0\)

8 tháng 11 2020

A=\(\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)

=\(\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

=\(\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}}{\sqrt{x-2}}\)

Vậy A=\(\frac{\sqrt{x}}{\sqrt{x}-2}\)vs x\(\ge0;x\ne4\)

9 tháng 11 2020

C=\(\left(\frac{1+x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\times\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}=\frac{1+x}{\sqrt{x}}\)

Vậy C=\(\frac{1+x}{\sqrt{x}}\)vs x>0