K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2020

Để A nguyên mà 32018 + 1 > 5 thì phải cm 32018 + 1\(⋮\)5

Bài giải

Ta có: A = \(\frac{3^{2018}+1}{5}\)

Xét chữ số tận cùng của 32018:

Ta có:

32018 = 34.504 + 2 = 34.504.32 = (...1).32 = (...1).9 = (...9)

Xét 32018 + 1:

32018 + 1 = (...9) + 1 = (...0)

Vì 32018 + 1 có chữ số tận cùng là 0

Nên 32018 + 1 \(⋮\)5

Suy ra A thuộc Z

=> Đpcm

15 tháng 3 2020

cho\(\frac{3}{1.3}\)+\(\frac{3}{3.5}\)+\(\frac{3}{5.7}\)+...+\(\frac{3}{49.51}\)hãy tính giá trị biểu thức

5 tháng 4 2019

a, Biểu thức A có \(5\inℤ,n\inℤ\). Để A là phân số thì ta có điều kiện là :\(n-1\ne0\Rightarrow n\ne-1\)

\(A=\frac{5}{n-1}\Rightarrow n-1\inƯ(5)\)

Để A là số nguyên \(\Leftrightarrow n-1\in\left\{\pm1;\pm5\right\}\)

n - 11-15-5
n206-4

b, Gọi d là ƯCLN\((n,n+1)\)

Ta có : \(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)

\(\Rightarrow(n+1)-n⋮d\)

\(\Rightarrow n-n+1⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy : ....

c, \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}< 1-\frac{1}{2}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}< \frac{50}{50}=1\)

\((đpcm)\)

25 tháng 7 2022

chữ mình hơi xấu thông cảm

DD
27 tháng 5 2021

a) \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

b) \(A=\frac{a\left(a+1\right)-1}{a\left(a+1\right)+1}\)

Với \(a\)nguyên thì \(a\left(a+1\right)\)là tích hai số nguyên liên tiếp nên là số chẵn, do đó \(a\left(a+1\right)-1,a\left(a+1\right)+1\)là hai số lẻ liên tiếp. Do đó \(A\)là phân số tối giản. 

24 tháng 3 2018

Bạn có thể dựa theo bài này

https://olm.vn/hoi-dap/question/84156.html

Bạn sao chép rồi làm nha

Tk mk nha

24 tháng 3 2018

https://olm.vn/hoi-dap/question/84156.html

Bạn dựa theo câu hỏi này nha

Tk mk nha