K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2017

a ) Để \(A=\frac{2n+2}{2n-4}\) là phân số <=> \(2n-4\ne0\Rightarrow n\ne2\)

b ) \(A=\frac{2n+2}{2n-4}=\frac{\left(2n-4\right)+6}{2n-4}=1+\frac{6}{2n-4}\)

=> 2n - 4 là ước của 6 => Ư(6) = { - 6; - 3; - 2; - 1; 1; 2 ; 3 ; 6 }

Mà 2n - 4 = 2(n - 2) là số chẵn => 2n - 4 = { - 6; - 2 ; 2 ; 6 }

Ta có : 2n - 4 = - 6 <=> 2n = - 2 => n = - 1 (TM)

           2n - 4 = - 2 <=> 2n = 2 => n = 1 (TM)

           2n - 4 = 2 <=> 2n = 6 => n = 3 (TM)

           2n - 4 = 6 <=> 2n = 10 => n = 5 (TM)

Vậy n = { - 1; 1; 3; 5 } thì A là số nguyên 

4 tháng 3 2018

Hoàn tất đoạn văn sau, sau đó trả lời câu hỏi bên dưới

Quang s camping(1)_______at_____the weekend, he often go camping(2)_____on_____the mountains. He usually goes(3)____with______ his friend. Quang and his fried always wear strong boots(4)_____and______warm clothes. (5)______They_____always take food, water and a camping stove. Sometimes, they (6)______camp_______overnight.

* Questions:

1. What does Quang s?

He s camping.

2. Where does he often go camping?

He often goes camping on the mountains.

3. When does he go?

On weekend.

4. Who does he usually go with?

He usually goes with his friend.

5. What do they always wear?

Quang and his fried always wear strong boots and warm clothes.

6. What do they always take?

They always take food, water and a camping stove.

7. Do they camp overnight?

Yes, they do.

6 tháng 3 2018

nay, làm gì vậy ta 

ông bị khùng chac 

3 tháng 4 2018

a, với n thuộc Z

 Để A là phân số <=> 2n + 1 thuộc Z

                                2n thuộc Z

                                2n khác 0

      => n khác 0 thì A là phân số

 b, để A là số nguyên thì 2n + 1 chia hết cho 2n 

                             mà 2n chia hết cho 2n 

 =>  ( 2n +1) - ( 2n) chia hết cho 2n

Bài 1: 

a: Để A là phân số thì n+1<>0

hay n<>-1

b: Để A là số nguyên thì \(n+1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{0;-2;4;-6\right\}\)

để P thuộc Z =>2n+1 chia hết cho n+5

=>2n+10-9 chia hết cho n+5

=>2(n+5)-9 chia hết cho n+5

=>9 chia hết cho n+5

\(\Rightarrow n+5\in\left\{-9;-3;-1;1;3;9\right\}\)

\(\Rightarrow n\in\left\{-14;-8;-6;-4;-2;4\right\}\)

11 tháng 3 2018

Gọi UCLN(3n+2,n+1) = d

Ta có: 3n+2 chia hết cho d 

n+1 chia hết cho d => 3n+3 chia hết cho d

=>3n+3-(3n+2) chia hết cho d

=>1 chia hết cho d

=> d = 1

=> UCLN(3n+2,n+1) = 1

Vậy......

11 tháng 3 2018

ta có A\(=\frac{3n+2}{n+1}=\frac{3\left(n+1\right)-1}{n+1}=\frac{3\left(n+1\right)}{n+1}+\frac{1}{n+1}=3\)\(+\frac{1}{n+1}\)

Do 1 ko chia hết cho bất kì số nào thuộc Z ngoại trừ 1 và -1

=> \(\frac{1}{n+1}\)tối giản => A tối giản

11 tháng 8 2016

hoi kho voi em

14 tháng 3 2018

a, n khác 0

b,n thuộc ước của 13

10 tháng 3 2019

\(A=\frac{63}{3n+1}\)

để A là số tự nhiên => \(63⋮3n+1\Rightarrow3n+1\inƯ\left(63\right)\)

Ư(63)= { \(\pm1;\pm3;\pm7;\pm9;\pm21;\pm63\)

=> 3n = { -2;0;-4;2;-8;6;-10;8;-22;20;-64;62 }

=> n = { 0; 2 }

10 tháng 3 2019

Để A là số tự nhiên thì \(63⋮3n+1\)

\(\Leftrightarrow3n+1\inƯ\left(63\right)\)

\(\Leftrightarrow3n+1\in\left\{1;3;7;9;21;63;-1;-3;-7;-9;-21;-63\right\}\)

Để A là số tự nhiên => 3n + 1 là số tự nhiên khác 0

\(\Leftrightarrow3n+1\in\left\{1;3;7;9;21;63\right\}\)

\(\Leftrightarrow3n\in\left\{0;2;6;8;20;62\right\}\)

\(\Leftrightarrow n\in\left\{0;\frac{2}{3};2;\frac{8}{3};\frac{20}{3};\frac{62}{3}\right\}\)

Vậy với \(n\in\left\{0;\frac{2}{3};2;\frac{8}{3};\frac{20}{3};\frac{62}{3}\right\}\) thì A là số tự nhiên