Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = (2+22+23+24)+...+(22013+22014+22015+22016)
A=2 x (1+2+22)+...+22013 x (1+2+22)
A=2 x 7 +...+ 22013 x 7
A=7 x (2+...+22013)
vì 7chia hết cho 7 nên 7 x (2+...+22013)
vậy A chia hết cho 7
- vì những số chia hot cho7 có dạng 7*k nên A chia hết cho 7vi:
dạng 7*k=A=<2+22+23>+...
A=14+<..>+...
A=7*2+...
A=2+22+23+24+25+26+...+218
=(2+22+23)+(24+25+26)+....+(216+217+218)
=1(2+22+23)+23(2+22+23)+...+215(2+22+23)
=1.14+23.14+...+215.14
=14(1+23+...+215) chia hết cho 14
=>dpcm
A = 3 + 32 + 33 + 34 +..... + 32015 + 32016
= (3 + 32 + 33) + (34+ 35 + 36 ) +.....+ (32014 + 32015 + 32016)
= 3(1 + 3 + 32) + 34(1 + 3 + 32) + .....+ 32014(1 + 3 + 32)
= 13(3 + 34 + ....+ 32014) \(⋮13\)
A = 3 + 32 + 33 + 34 +..... + 32015 + 32016
= (3 + 32) + (33 + 34) + .... + (32015 + 32016)
= 3(1 + 3) + 33(1 + 3) + .... + 32015(1 + 3)
= 4(3 + 33 + .... + 32015) \(⋮4\)
C1:\(A=2_{ }\left(1+2+4+8+16\right)+2^6\left(1+2+4+8+16\right)+...+2^{96}\left(1++2+4+8+16\right)\)
\(A=31\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)
C2: Tương Tự
Giải:(bài này là đáp án đúng,cô giáo chữa rồi) đề thi HK1
Ta thấy 2015^2016 là một số lẻ suy ra 2015^2016-1 là một số chẵn và 2015^2016+1 cũng là số chẵn
suy ra 2015^2016-1 chia hết cho 2
2015^2016 +1 chia hết cho 2
Suy ra (2015^2016-1)(2016^2016+1) chia hết cho(2.2
Hay A chia hết cho 4
2 Xét 2 STN liên tiếp
(2015^2016-1),2015^2016,(2015^2106+1)
Trong ba số tự nhiên sẽ có một số chia hết cho 3
Ta thấy 2015 ko chia hết cho 3 suy ra 2015^2016 ko chia hết cho 3
Vậy 1 trong 2 số (2015^2016-1) ;(29015^2016+1) sẽ phải chia hết cho 2 suy ra A chia hết cho 3
mà (3,4) là cặp số nguyên tố cùng nhau nên A chia hết cho 3
MÌnh ở Huyện thuận thành xã hoài thượng hân hạnh làm quen
Ta có :
A = 1 + 3 + 32 + 33 + ... + 32015
A = (1 + 32) + (3 + 33) + ... + (32013 + 32015)
A = 1 x (1 + 9) + 3 x (1 + 9) + ... + 32013 x (1 + 9)
A = 1 x 10 + 3 x 10 + ... + 32013 x 10
A = 10 x (1 + 3 + ... + 32013) chia hết cho 5
Vậy A chia hết cho 5 (ĐPCM)
Ủng hộ mk nha !!! ^_^
A = 1 + 3 + 32 + 33 + 34 + ... + 32015
A = 30 + 31 + 32 + 33 + ... + 32015
A = (30 + 32) + (33+ 33) + ... + (32013 + 32015)
A = 30 . ( 1 + 9) + 33. (1 + 9) + ... + 32013 . ( 1 + 9)
A = 30 . 10 + 33 . 10 + ... + 32013 . 10
A = (30 + 33 + .. + 32013) . 10
Vì 10 chia hết cho 5
=> A chia hết cho 5 ( ĐPCM)
Câu a và câu b bài 2 xem Câu hỏi tương tự
Bài 2 câu c :
Do A chia hết cho 2 và 5 ( chai hết cho 15 tức là chia hết cho 5 )
Mà chia hết cho cả 2 và 5 thì có số tận cùng là 0
=> Số tận cùng của A = 0.
Bài 1 để nghiên cứu
A=2010^1+2010^2+2010^3+..........................................+2010^2010
vay suy ra co tat ca 2010 s hang vay ghep cap
A=2010(1+2010)+2010^3(1+2010)+..........................+2010^9(1+2010)
A=2010.2011+2010^3.2011+............................+2010^9.2011
A=2011(2010+........2010^9) chia het 2011
suy ra A chia het cho 2011