Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left(2x_1-3y_1\right)^{2016}\ge0;\left(2x_2-3y_2\right)^2\ge0;......;\left(2x_{2015}-3y_{2015}\right)\ge0\)
nên \(\left(2x_1-3y_1\right)^{2016}+\left(2x_2-3y_2\right)^{2016}+...+\left(2x_{2015}-3y_{2015}\right)\le0\)
\(\Leftrightarrow\left(2x_1-3y_1\right)^{2016}+\left(2x_2-3y_2\right)^{2016}+..+\left(2x_{2015}-3y_{2015}\right)^{2016}=0\)
\(\Leftrightarrow2x_1-3y_1=0;2x_2-3y_2=0;....;2x_{2015}-3y_{2015}=0\)
\(\Leftrightarrow2x_1=3y_1\)
\(2x_2=3y_2\)
............................
\(2x_{2015}=3y_{2015}\)
\(\Leftrightarrow2\left(x_1+x_2+...+x_{2015}\right)=3\left(y_1+y_2+...+y_{2015}\right)\)
\(\Leftrightarrow\)\(\frac{x_1+x_2+x_3+...+x_{2015}}{y_1+y_2+y_3+...+y_{2015}}=\frac{3}{2}\)
xét A \(\ge\) 0;có A\(\le\) 0=>A=0
từ đó tính được x;y thế vào B làm tiếp