Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+\left(x-c\right)\left(x-a\right)+x^2\)
\(=x^2-bx-ax+ab+x^2-cx-bx+bc+x^2-ax-cx+ca+x^2\)
\(=4x^2-2ax-2bc-2cx+ab+bc+ca\)
\(=4x^2-2\left(a+b+c\right)x+ab+bc+ca\)
với \(x=\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c\Rightarrow2x=a+b+c\)
\(\Rightarrow M=\left(a+b+c\right)^2-\left(a+b+c\right)^2+ab+bc+ca\)
\(=ab+bc+ca\)
Bài 1:
a)Từ \(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Rightarrow\left[\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{matrix}\right.\) (Điều phải chứng minh)
b)Ngược lại ta cũng có : nếu \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\)
Bài 2:
a)\(\frac{3m^2+7m+1}{m-3}=\frac{3m\left(m-3\right)+16m+1}{m-3}=\frac{3m\left(m-3\right)}{m-3}+\frac{16m+1}{m-3}=3m+\frac{16m+1}{m-3}\in Z\)
Suy ra \(16m+1⋮m-3\)
\(\frac{16m+1}{m-3}=\frac{16\left(m-3\right)+49}{m-3}=\frac{16\left(m-3\right)}{m-3}+\frac{49}{m-3}=16+\frac{49}{m-3}\in Z\)
Suy ra 49 chia hết m-3....
b)tương tự
=x2-bx-ax+ab+x2-cx-bx+bc+x2-cx-ax+x2
=(x2+x2+x2+x2)-(ax+bx+cx+ax+bx+cx)+ab+bc+ca
=4x2-2(a+b+c)x+ab+bc+ca
Thay x=\(\frac{1}{2}\)(a+b+c) vào M ta đc:
M=4.\(\frac{1}{4}\)(a+b+c)2-2(a+b+c).\(\frac{1}{2}\)(a+b+c)+ab+bc+ca
=(a+b+c)2-(a+b+c)2+ab+bc+ca
=ab+bc+ca
mk ko hiểu bản có thể giải thích hộ mk ko