Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+/ ta có: \(\left(a+b\right)^2\)=\(a^2\)+\(b^2\)+2ab=\(25^2\)=625
=>\(a^2\)+\(b^2\)=625-2ab=625-2.136
=>\(a^2\)+\(b^2\)=353
+/ ta có: \(\left(a+b\right)^3\)=\(a^3\)+\(3a^2b\)+\(3ab^2\)+\(b^3\)=\(25^3\)
=>\(a^3\)+\(b^3\)=\(25^3\)-3ab(a+b)=\(25^3\)-3.136.25
=>\(a^3\)+\(b^3\)=5425
a: \(A=\left(a+b+c\right)^2+\left(a-b+c\right)^2+\left(a+b-c\right)^2+\left(b+c-a\right)^2\)
\(=2\left(a+c\right)^2+2b^2+\left(a+b-c\right)^2+\left(a-b-c\right)^2\)
\(=2\left(a+c\right)^2+2b^2+2\left(a-c\right)^2+2b^2\)
\(=2\left(a^2+2ac+c^2+a^2-2ac+c^2\right)+4b^2\)
\(=2\left(2a^2+2c^2\right)+4b^2\)
\(=4a^2+4b^2+4c^2\)
b: \(\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)
\(=2\left(a+b\right)^2+2c^2-2\left(a+b\right)^2\)
\(=2c^2\)
a: \(A=\left(a^2-9\right)\left(a^2+9\right)=a^4-81\)
b: \(=\left(a^2-25\right)\left(a+5\right)\)
\(=a^3+5a^2-25a-125\)
\(A=3y^2+6y+5\)
\(\Leftrightarrow A=3\left(y^2+2y+1\right)+2\)
\(\Leftrightarrow A=3\left(y+1\right)^2+2\ge2\) Với \(\forall y\in R\)
Dấu "=" xảy ra khi y = -1
Vậy GTNN của A là 2 khi y = -1
\(B=\left(x+1\right)\left(x^2+4x+5\right)\left(x+5\right)\)
\(\Leftrightarrow B=\left(x^2+6x+5\right)\left(x^2+4x+5\right)\)
\(\Leftrightarrow B=\left(t+x\right)\left(t-x\right)=t^2-x^2\)
\(\Leftrightarrow B=x^4+10x^2+25-x^2=x^4+9x^2+25\)
\(\Leftrightarrow B=\left(x^2+\dfrac{9}{2}\right)^2+\dfrac{19}{4}\ge\left(\dfrac{9}{2}\right)^2+\dfrac{19}{4}=25\) Với \(\forall x\in R\)
Dấu "=" xảy ra khi x = 0
Vậy GTNN Của B là 25 khi x = 0 .
\(a.2\left(x-1\right)^2+\left(x+3\right)^2=3\left(x-2\right)\left(x+1\right)\)
\(\Leftrightarrow2x^2-4x+2+x^2+6x+9=3x^2-3x-6\)
\(\Leftrightarrow2x^2+x^2-3x^2-4x+6x+3x+2+9+6=0\)
\(\Leftrightarrow5x+17=0\)
\(\Leftrightarrow x=-\dfrac{17}{5}\)
KL.............
\(b.\left(x+2\right)^2-2\left(x-3\right)=\left(x+1\right)^2\)
\(\Leftrightarrow x^2+4x+4-2x+6=x^2+2x+1\)
\(\Leftrightarrow x^2-x^2+4x-2x-2x+4+6-1=0\)
\(\Leftrightarrow9=0\left(vôly\right)\)
KL..................
\(c.TươngTự\)
\(a.x+y=2\) ⇒ \(\left(x+y\right)^2=4\text{⇒}xy=\dfrac{4-20}{2}=-8\)
Ta có : \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=2\left(20+8\right)=56\)
\(b.5m-2n=30\text{⇒}\left(5m-2n\right)^2=900\text{⇒}-20mn=900-1200\text{⇒}mn=15\)
\(B=a^2+b^2=\left(a^2+2ab+b^2\right)-2ab=\left(a+b\right)^2-2ab\\ C=a^5+b^5\\ =\left(a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5\right)-5ab\left(a^3+2a^2b+2ab^3+b^3\right)\\ =\left(a+b\right)^5-5ab\left[\left(a+b\right)^3-ab\left(a+b\right)\right]\)
Bây giờ bạn chỉ cần thay số lại rồi tính thôi