K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2020

Theo bất đẳng thức 3 biến đối xứng thì ta có: \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)

Dấu "=" xảy ra khi: x = y = z

Mà ta thấy: \(\frac{\left(x+y+z\right)^2}{3}=x^2+y^2+z^2=12\)

\(\Rightarrow x=y=z=2\)

Vậy x = y = z = 2

24 tháng 10 2020

tớ  chưa học bđt

19 tháng 10 2017

Vì x+y+z=6 và \(x^2+y^2+z^2=12\)

Ta có \(x^2+y^2+z^2-x+y+z=12-6\)

Rút gọn: \(x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)=6\)

=> \(x+y+z=x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)\)

Tìm x \(\Rightarrow x\left(x-1\right)=x\Rightarrow x-1=1\Rightarrow x=2\)

Tìm y \(\Rightarrow y\left(y-1\right)=y\Rightarrow y-1=1\Rightarrow y=2\)

Tìm z \(\Rightarrow z\left(z-1\right)=z\Rightarrow z-1=1\Rightarrow z=2\)

Vậy \(x=y=z=2\)

19 tháng 10 2017

\(\hept{\begin{cases}x^2+y^2+z^2=12\\x+y+z=6\end{cases}}\)

Ta có \(\left(x+y+z\right)^2=36\)

\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=36\)

\(\Leftrightarrow12+2xy+2yz+2xz=36\)

\(\Leftrightarrow2xy+2yz+2xz=24\Leftrightarrow xy+yz+xz=12\)

\(\Rightarrow x^2+y^2+z^2=xy+yz+xz=12\)

Mặt khác ta có \(x^2+y^2+z^2\ge xy+yz+xz\)

Dấu \(=\)xảy ra khi \(x=y=z\)

Vậy \(x=y=z=2\)

6 tháng 11 2017

Áp dụng bđt bunhia cho 2 bộ số (1 ; 1 ; 1) và (x ; y ; z) ta có: 

(1 + 1 + 1).(x² + y² + z²) ≥ (x + y + z)² 

<=> 3(x² + y² + z²) ≥ 36 < do x+y+z=6 theo đề bài > 

<=> x² + y² + z² ≥ 12 => đpcm 

Dấu "=" xảy ra <=> x = y = z = 2 

----------------------------- 

2) xy/z + yz/x + zx/y ≥ x + y + z với x,y,z là các số thực dương 

Áp dụng bđt cô si cho 2 số thực dương ta có: 

xy/z + yz/x ≥ 2y 
yz/x + zx/y ≥ 2z 
xy/z + zx/y ≥ 2x 

Cộng vế với vế 3bđt trên ta được : 

xy/z + yz/x + zx/y ≥ x + y + z => đpcm 

Dấu "=" xảy ra <=> x = y = z 

----------------------------------- 

3) x² + 5y² - 4xy + 2x - 6y +3 > 0 với mọi x , y 

<=> (x² - 4xy + 4y²) + (2x - 4y) + 1 + (y² -2y + 1) + 1 > 0 

<=> [(x - 2y)² + 2(x - 2y) + 1] + (y - 1)² + 1 > 0 

<=> (x - 2y + 1)² + (y - 1)² + 1 > 0 => luôn đúng với mọi x,y 

=> đpcm 

21 tháng 10 2018

\(x+y+z=6\)

\(\Leftrightarrow\)\(\left(x+y+z\right)^2=36\)

\(\Leftrightarrow\)\(x^2+y^2+z^2+2xy+2yz+2zx=36\)

\(\Leftrightarrow\)\(2xy+2yz+2zx=24\)

\(\Leftrightarrow\)\(2xy+2yz+2zx=2x^2+2y^2+2z^2\)

\(\Leftrightarrow\)\(2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)

\(\Leftrightarrow\)\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)

\(\Leftrightarrow\)\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Leftrightarrow}x=y=z}\)

Mà \(x+y+z=6\)\(\Rightarrow\)\(x=y=z=\frac{6}{3}=2\)

Vậy \(x=y=z=2\)

Chúc bạn học tốt ~ 

21 tháng 10 2018

ĐK: x + y + z = 6; \(x^2+y^2+z^2=12\)

Áp dụng BĐT Bunhiacopxki cho hai bộ số (1;1;1) và (x;y;z).Ta có:

\(\left(1+1+1\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

Thay \(x+y+z=6\) và ta có:

\(3\left(x^2+y^2+z^2\right)\ge36\Leftrightarrow x^2+y^2+z^2\ge12\) (tmđk)

Dấu "=" xảy ra khi \(x=y=z=\frac{6}{3}=2\) (*)

Từ (*) suy ra  x=y=z=2

12 tháng 7 2017

a)

\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)

\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)

Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)

Nên \(x+y+2=0\Rightarrow x+y=-2\)

Ta có :

\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)

Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)

\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)

hay \(M\le-2\)

Dấu "=" xảy ra khi \(x=y=-1\)

                    Vậy \(Max_M=-2\)khi \(x=y=-1\)

12 tháng 7 2017

c)  ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^  , mình làm bài này với điều kiện x ,y ,z ko âm nhé )

Ta có :

\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)

\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)

\(\Rightarrow y=2-x\)

Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)

\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)

\(\Leftrightarrow z=\frac{4-x}{3}\)

Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :

\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)

\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)

\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))

Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )

Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)