Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy
72
=
2
3
.
3
2
72=2
3
.3
2
nên a, b có dạng
{
�
=
2
�
3
�
�
=
2
�
.
3
�
{
a=2
x
3
y
b=2
z
.3
t
với
�
,
�
,
�
,
�
∈
N
x,y,z,t∈N và
�
�
�
{
�
,
�
}
=
3
;
�
�
�
{
�
,
�
}
=
2
max{x,z}=3;max{y,t}=2.
Theo đề bài, ta có
2
�
.
3
�
+
2
�
.
3
�
=
42
2
x
.3
y
+2
z
.3
t
=42
⇔
2
�
−
1
.
3
�
−
1
+
2
�
−
1
3
�
−
1
=
7
⇔2
x−1
.3
y−1
+2
z−1
3
t−1
=7 (*), do đó
�
,
�
,
�
,
�
≥
1
x,y,z,t≥1
TH1:
�
≥
�
,
�
≤
�
x≥z,y≤t. Khi đó
�
=
3
,
�
=
2
x=3,t=2. (*) thành:
4.
3
�
−
1
+
3.
2
�
−
1
=
7
4.3
y−1
+3.2
z−1
=7
⇔
�
=
�
=
1
⇔y=z=1
Vậy
{
�
=
24
�
=
18
{
a=24
b=18
(nhận)
TH2: KMTQ thì giả sử
�
≥
�
,
�
≥
�
x≥z,y≥t. Khi đó
�
=
3
,
�
=
2
x=3,z=2. (*) thành
4.
3
�
−
1
+
2.
3
�
−
1
=
7
4.3
y−1
+2.3
t−1
=7, điều này là vô lí.
Vậy
(
�
,
�
)
=
(
24
,
18
)
(a,b)=(24,18) hay
(
18
,
24
)
(18,24) là cặp số duy nhất thỏa yêu cầu bài toán.
2) \(\sum\dfrac{x}{x^2-yz+2013}=\sum\dfrac{x^2}{x^3-xyz+2013x}\ge\dfrac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2013\left(x+y+z\right)}=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\dfrac{1}{x+y+z}\left(đpcm\right)\)
C/m: \(\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
\(\Rightarrow2x^2+xy+2y^2\ge\dfrac{5}{4}\left(x^2+2xy+y^2\right)\)
\(\Leftrightarrow8x^2+4xy+8y^2\ge5x^2+10xy+5y^2\)
\(\Leftrightarrow3\left(x-y\right)^2\ge0\left(LĐ\right)\)
Vậy \(\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
CMTT: \(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)\);
\(\sqrt{2z^2+zx+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)
Vậy H=\(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+xz+2z^2}\ge\sqrt{5}\left(x+y+z\right)=2019\)Hmin=2019\(\Leftrightarrow x=y=z=\dfrac{\dfrac{2019}{\sqrt{5}}}{3}\)
Lời giải:
\(P=\sum \frac{1}{2xy^2+1}=\sum (1-\frac{2xy^2}{2xy^2+1})\)
\(=3-2\sum\frac{xy^2}{2xy^2+1}\geq 3-2\sum \frac{xy^2}{3\sqrt[3]{x^2y^4}}\) theo BĐT AM-GM.
\(=3-\frac{2}{3}\sum \sqrt[3]{xy^2}\)
Tiếp tục áp dụng BĐT AM-GM:
\(\sqrt[3]{xy^2}\leq \frac{x+y+y}{3}\Rightarrow \sum \sqrt[3]{xy^2}\leq \frac{3(x+y+z)}{3}=3\)
$\Rightarrow P\geq 3-\frac{2}{3}.3=1$
Vậy $P_{\min}=1$. Giá trị này đạt tại $x=y=z=1$
\(P^2=\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}+2.\left(\frac{xy.yz}{zx}+\frac{yz.zx}{xy}+\frac{zx.xy}{zy}\right)\)
\(=\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}+2.2016\)
Áp dụng BĐT Cauchy:\(\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}\ge2\sqrt{\frac{x^2y^2}{z^2}.\frac{y^2z^2}{x^2}}=2y^2\)
\(\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}\ge2\sqrt{\frac{y^2z^2}{x^2}.\frac{z^2x^2}{y^2}}=2z^2\)
\(\frac{z^2x^2}{y^2}+\frac{x^2y^2}{z^2}\ge2\sqrt{\frac{x^2z^2}{y^2}.\frac{x^2y^2}{z^2}}=2x^2\)
Cộng theo vế ta được:\(2\left(\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}\right)\ge2x^2+2y^2+2z^2=2.2016\)
\(\Rightarrow\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}\ge2016\)
\(\Rightarrow P^2\ge2016+2016.2=6048\Rightarrow P\ge\sqrt{6048}=12\sqrt{42}\)
Nên GTNN của P là \(12\sqrt{42}\) đạt được khi \(x=y=z=\sqrt{\frac{2016}{3}}=4\sqrt{42}\)