K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2017

Ta chứng minh

\(a+b\ge\sqrt[3]{ab}\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\)

\(\Leftrightarrow\left(\sqrt[3]{a}-\sqrt[3]{b}\right)^2\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\ge0\)(đúng )

Áp đụng vào bài toán ta được

\(\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}\)

\(\le\frac{1}{\sqrt[3]{xy}\left(\sqrt[3]{x}+\sqrt[3]{y}\right)+1}+\frac{1}{\sqrt[3]{yz}\left(\sqrt[3]{y}+\sqrt[3]{z}\right)+1}+\frac{1}{\sqrt[3]{zx}\left(\sqrt[3]{z}+\sqrt[3]{x}\right)+1}\)
\(=\frac{\sqrt[3]{z}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}+\frac{\sqrt[3]{x}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}+\frac{\sqrt[3]{y}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}=1\)

27 tháng 3 2017

đặt x=a/b , y=b/c , z=c/a 

30 tháng 10 2019

ui, đề thi HSG huyện mình nè. cậu huyện nào mà đăng thế

chứng minh BĐT : \(a^3+b^3+1\ge ab\left(a+b\right)\) với a>0,b>0

\(\Rightarrow a^3+b^3+1\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)

áp dụng BĐT trên,ta có:

\(x+y+1\ge\sqrt[3]{xy}\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)\)

\(\Rightarrow\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{x+z+1}\le\frac{1}{\sqrt[3]{xy}\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)}+\frac{1}{\sqrt[3]{yz}\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)}+\frac{1}{\sqrt[3]{xz}\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)}\)

\(=\frac{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{\sqrt[3]{xyz}\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)}=1\)

Dấu " = " xảy ra khi x = y = z = 1

30 tháng 10 2019

Ap dung bdt \(a+b\ge\sqrt[3]{a^2b}+\sqrt[3]{ab^2}\left(a,b\ge0\right)\)

ta co \(x+y\ge\sqrt[3]{xy}\left(\sqrt[3]{x}+\sqrt[3]{y}\right)\)

ma \(xyz=1=>\sqrt[3]{xy}=\frac{1}{\sqrt[3]{z}}\)

nen \(x+y\ge\frac{\sqrt[3]{x}+\sqrt[3]{y}}{\sqrt[3]{z}}\)

=> \(x+y+1\ge\frac{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{\sqrt[3]{z}}\)

=>\(\frac{1}{x+y+1}\le\frac{\sqrt[3]{z}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}\)

chung minh tuong tu cung co \(\frac{1}{x+z+1}\le\frac{\sqrt[3]{y}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}\) va \(\frac{1}{z+y+1}\le\frac{\sqrt[3]{x}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}\)

cong 3 bdt cung chieu ta duoc

\(\frac{1}{x+y+1}+\frac{1}{x+z+1}+\frac{1}{y+z+1}\le\frac{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}=1\)

dau = xay ra khi x=y=z=1

Chuc ban hoc tot !!!

21 tháng 10 2016

Ta có

\(\frac{1}{1+x+xy}=\frac{1}{1+x+\frac{1}{z}}=\frac{z}{z+xz+1}\)

\(\frac{1}{1+y+yz}=\frac{1}{1+\frac{1}{xz}+yz}=\frac{xz}{xz+1+z}\)

Từ đó ta có

A = \(\frac{z}{1+z+xz}+\frac{xz}{1+z+xz}+\frac{1}{1+z+xz}\)

\(\frac{1+z+xz}{1+z+xz}=\:1\)

11 tháng 10 2020

Áp dụng bất đẳng thức AM - GM, ta được: \(2yz+2=x^2+\left(y^2+2yz+z^2\right)=x^2+\left(y+z\right)^2\ge2\sqrt{x^2.\left(y+z\right)^2}=2x\left(y+z\right)\Rightarrow yz+1\ge x\left(y+z\right)\)\(\Rightarrow VT\le\frac{x^2}{x^2+x+x\left(y+z\right)}+\frac{y+z}{x+y+z+1}+\frac{1}{xyz+3}=\frac{x+y+z}{x+y+z+1}+\frac{1}{xyz+3}\)

  • Nếu \(x+y+z\le2\)thì \(VT\le1-\frac{1}{x+y+z+1}+\frac{1}{xyz+3}\le1-\frac{1}{3}+\frac{1}{3}=1\)
  • Nếu \(x+y+z\ge2\), ta đặt x + y + z = p; xy + yz + zx = q; xyz = r thì áp dụng bất đẳng thức Schur, ta được \(VT\le\frac{p}{p+1}+\frac{1}{\frac{p\left(4q-p^2\right)}{9}+3}=\frac{p}{p+1}+\frac{9}{p^3-4p+27}\)

Khảo sát hàm trên với \(p\in\left[\sqrt{2};2\right]\)ta cũng có \(VT\le1\)

Vậy ta có: \(\frac{x^2}{x^2+yz+x+1}+\frac{y+z}{x+y+z+1}+\frac{1}{xyz+3}\le1\)

Đẳng thức xảy ra khi x = y = 1; z = 0

11 tháng 10 2020

bài này x,y,z pk không âm

16 tháng 9 2018

Với 2 số dương bất kì: ( 1 )

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)Vì x và y dương nên \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\forall x;y\)

Áp dụng ( 1 ): \(\frac{4}{2x+y+z}=\frac{4}{\left(x+y\right)+\left(x+z\right)}\le\frac{1}{x+y}+\frac{1}{x+z}\)

Mà: \(\frac{1}{x+y}+\frac{1}{x+z}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}+\frac{1}{z}\right)=\frac{1}{4}\)\(=\frac{1}{4}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Nên: \(\frac{1}{2x+y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Tương tự ta có: \(\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\)

Và \(\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Cộng vế với vế các bất đẳng thức kết hợp với điều kiện \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\) nên ta có đpcm

22 tháng 5 2020

ko lam thi thoi chui cl ay!!!

22 tháng 5 2020

đù , chuyện giề đang xảy ra vậy man

15 tháng 4 2020

Ta có

\(x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)\)

\(=>x^2y^2+y^2z^2+z^2x^2+2\left(xyz\right)\left(x+y+z\right)\ge3xyz\left(x+y+z\right)\)

\(=>\left(xy+yz+zx\right)^2\ge3\left(x+y+z\right)\)

\(=>\frac{1}{\left(x+y+z\right)}\ge\frac{3}{\left(xy+yz+zx\right)^2}\)

\(=>A\ge\frac{3}{\left(xy+yz+zx\right)^2}-\frac{2}{xy+yz+zx}\)

đặt 

\(\frac{1}{xy+yz+zx}=t\)

\(=>A\ge3t^2-2t\)

mà \(\left(3t-1\right)^2\ge0=>9t^2-6t+1\ge0=>3t^2-2t+\frac{1}{3}\ge0\Rightarrow3t^2-2t\ge-\frac{1}{3}\)

\(=>A\ge-\frac{1}{3}\)(dpcm)

Dấu = xảy ra khi x=y=z=1

15 tháng 4 2020

tinh tuoi con gai bang 1/4 tuoi me , tuoi con bang 1/5 tuoi me . tuoi con gai cong voi tuoi cua con trai 

la 18 tuoi . hoi me bao nhieu tuoi ?