Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hướng dẫn: đặt \(A=\dfrac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\dfrac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\dfrac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
Khi đó \(F-A=x-y+y-z+z-x=0\Rightarrow F=A\)
\(\Rightarrow2F=F+A=\sum\dfrac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\sum\dfrac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}\ge\sum\dfrac{\left(x+y\right)^2\left(x^2+y^2\right)}{4\left(x^2+y^2\right)\left(x+y\right)}\)
\(\Rightarrow2F\ge\dfrac{x+y+z}{2}\Rightarrow F\ge\dfrac{x+y+z}{4}\)
\(P=1+\dfrac{z}{x}+\dfrac{z}{y}+\dfrac{z^2}{xy}\)
vì \(x^2+y^2=z^2\Rightarrow z=\sqrt{x^2+y^2}\)
Áp dụng BĐT bunyakovsky:
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Rightarrow z=\sqrt{x^2+y^2}\ge\sqrt{\dfrac{\left(x+y\right)^2}{2}}=\dfrac{\sqrt{2}\left(x+y\right)}{2}\)
do đó \(P\ge1+\dfrac{\sqrt{2}\left(x+y\right)}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{x^2+y^2}{xy}\)
Áp dụng BĐT cauchy:\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)và\(x^2+y^2\ge2xy\)
\(P\ge1+\dfrac{\sqrt{2}\left(x+y\right)}{2}.\dfrac{4}{x+y}+\dfrac{2xy}{xy}=3+2\sqrt{2}\)
dấu = xảy ra khi \(x=y=\dfrac{\sqrt{2}z}{2}\)
Lời giải:
Xét hiệu:
\(\frac{x^4}{(x^2+y^2)(x+y)}+\frac{y^4}{(y^2+z^2)(y+z)}+\frac{z^4}{(z^2+x^2)(z+x)}-\left(\frac{y^4}{(x^2+y^2)(x+y)}+\frac{z^4}{(y^2+z^2)(y+z)}+\frac{x^4}{(z^2+x^2)(z+x)}\right)\)
\(=\frac{x^4-y^4}{(x^2+y^2)(x+y)}+\frac{y^4-z^4}{(y^2+z^2)(y+z)}+\frac{z^4-x^4}{(z^2+x^2)(z+x)}\)
\(=x-y+y-z+z-x=0\)
\(\Rightarrow \frac{x^4}{(x^2+y^2)(x+y)}+\frac{y^4}{(y^2+z^2)(y+z)}+\frac{z^4}{(z^2+x^2)(z+x)}=\frac{y^4}{(x^2+y^2)(x+y)}+\frac{z^4}{(y^2+z^2)(y+z)}+\frac{x^4}{(z^2+x^2)(z+x)}\)
Do đó:
\(2F=\frac{x^4+y^4}{(x^2+y^2)(x+y)}+\frac{y^4+z^4}{(y^2+z^2)(y+z)}+\frac{z^4+x^4}{(z^2+x^2)(z+x)}\)
\(\geq \frac{\frac{(x^2+y^2)^2}{2}}{(x^2+y^2)(x+y)}+\frac{\frac{(y^2+z^2)^2}{2}}{(y^2+z^2)(y+z)}+\frac{\frac{(z^2+x^2)^2}{2}}{(z^2+x^2)(z+x)}\) (áp dụng BĐT Cauchy)
hay \(2F\geq \frac{x^2+y^2}{2(x+y)}+\frac{y^2+z^2}{2(y+z)}+\frac{z^2+x^2}{2(z+x)}\)
Mà cũng theo BĐT Cauchy thì:
\(\frac{x^2+y^2}{2(x+y)}+\frac{y^2+z^2}{2(y+z)}+\frac{z^2+x^2}{2(z+x)}\geq \frac{\frac{(x+y)^2}{2}}{2(x+y)}+\frac{\frac{(y+z)^2}{2}}{2(y+z)}+\frac{\frac{(z+x)^2}{2}}{2(x+z)}=\frac{x+y+z}{2}=\frac{1}{2}\)
\(\Rightarrow 2F\geq \frac{1}{2}\Rightarrow F\geq \frac{1}{4}\)
Vậy \(F_{\min}=\frac{1}{4}\Leftrightarrow x=y=z=\frac{1}{3}\)
Ta có:
\(x^2+1=x^2+xy+yz+zx\)
\(=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(x+z\right)\)
Tương tự:
\(\left\{{}\begin{matrix}y^2+1=\left(y+z\right)\left(y+x\right)\\z^2+1=\left(z+y\right)\left(z+x\right)\end{matrix}\right.\)
\(A=x\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(y+z\right)}{\left(x+y\right)\left(z+x\right)}}+y\sqrt{\dfrac{\left(z+x\right)\left(y+z\right)\left(x+y\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\dfrac{\left(x+y\right)\left(z+x\right)\left(y+z\right)\left(x+y\right)}{\left(z+x\right)\left(y+z\right)}}\)
\(=x\left|y+z\right|+y\left|z+x\right|+z\left|x+y\right|\)
TH1: x,y,z <0
\(A=-x\left(y+z\right)-y\left(z+x\right)-z\left(x+y\right)=-2\)
TH2: x,y,z>0
\(A=x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)=2\)
Ta có \(1+z^2=xy+yz+zx+z^2\)
\(=y\left(x+z\right)+z\left(x+z\right)\)
\(=\left(x+z\right)\left(y+z\right)\)
CMTT, \(1+x^2=\left(x+y\right)\left(x+z\right)\) và \(1+y^2=\left(x+y\right)\left(y+z\right)\)
Do đó \(\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}\) \(=\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}\)
\(=\sqrt{\left(y+z\right)^2}\) \(=\left|y+z\right|\)
Tương tự như thế, ta được
\(A=x\left|y+z\right|+y\left|z+x\right|+z\left|x+y\right|\)
Cái này không tính ra số cụ thể được nhé bạn. Nó còn phải tùy vào dấu của \(x+y,y+z,z+x\) nữa.
ta có:\(P=\sum\dfrac{y^2z^2}{x\left(y^2+z^2\right)}=\sum\dfrac{\dfrac{1}{x}}{\dfrac{1}{y^2}+\dfrac{1}{z^2}}\)
đặt \(\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)=\left(a;b;c\right)\)thì giả thiết trở thành : \(a^2+b^2+c^2=1\).tìm Min \(P=\dfrac{a}{b^2+c^2}+\dfrac{b}{a^2+c^2}+\dfrac{c}{a^2+b^2}\)
ta có:\(\dfrac{a}{b^2+c^2}=\dfrac{a}{1-a^2}=\dfrac{a^2}{a\left(1-a^2\right)}\)
Áp dụng bất đẳng thức cauchy:
\(\left[a\left(1-a^2\right)\right]^2=\dfrac{1}{2}.2a^2\left(1-a^2\right)\left(1-a^2\right)\le\dfrac{1}{54}\left(2a^2+1-a^2+1-a^2\right)^3=\dfrac{4}{27}\)
\(\Rightarrow a\left(1-a^2\right)\le\dfrac{2}{3\sqrt{3}}\)\(\Rightarrow\dfrac{a^2}{a\left(1-a^2\right)}\ge\dfrac{3\sqrt{3}}{2}a^2\)
tương tự với các phân thức còn lại ta có:
\(P\ge\dfrac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)=\dfrac{3\sqrt{3}}{2}\)
đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
hay \(x=y=z=\sqrt{3}\)
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\\\dfrac{1}{z}=c\end{matrix}\right.\) Thì bài toán trở thành
Cho \(a^2+b^2+c^2=1\) tính GTNN của \(P=\dfrac{a}{b^2+c^2}+\dfrac{b}{c^2+a^2}+\dfrac{c}{a^2+b^2}\)
Ta có:
\(a^2+b^2+c^2=1\)
\(\Rightarrow a^2+b^2=1-c^2\)
\(\Rightarrow\dfrac{c}{a^2+b^2}=\dfrac{c^2}{c\left(1-c^2\right)}\)
Mà ta có: \(2c^2\left(1-c^2\right)\left(1-c^2\right)\le\dfrac{\left(2c^2+1-c^2+1-c^2\right)^3}{27}=\dfrac{8}{27}\)
\(\Rightarrow c\left(1-c^2\right)\le\dfrac{2}{3\sqrt{3}}\)
\(\Rightarrow\dfrac{c^2}{c\left(1-c^2\right)}\ge\dfrac{3\sqrt{3}c^2}{2}\)
\(\Rightarrow\dfrac{c}{a^2+b^2}\ge\dfrac{3\sqrt{3}c^2}{2}\left(1\right)\)
Tương tự ta có: \(\left\{{}\begin{matrix}\dfrac{b}{c^2+a^2}\ge\dfrac{3\sqrt{3}b^2}{2}\left(2\right)\\\dfrac{a}{b^2+c^2}\ge\dfrac{3\sqrt{3}a^2}{2}\left(3\right)\end{matrix}\right.\)
Từ (1), (2), (3) \(\Rightarrow P\ge\dfrac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)=\dfrac{3\sqrt{3}}{2}\)
Dấu = xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\) hay \(x=y=z=\sqrt{3}\)
Xét: \(\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}-\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}=\frac{x^4-y^4}{\left(x^2+y^2\right)\left(x+y\right)}\)\(=\frac{\left(x^2+y^2\right)\left(x^2-y^2\right)}{\left(x^2+y^2\right)\left(x+y\right)}=\frac{\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)}{\left(x^2+y^2\right)\left(x+y\right)}=x-y\)(1)
Tương tự, ta có: \(\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}-\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}=y-z\)(2); \(\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}-\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}=z-x\)(3)
Cộng theo vế của 3 đẳng thức (1), (2), (3), ta được:
\(\left[\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}\right]\)\(-\left[\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\right]=0\)
\(\Rightarrow\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}\)\(=\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
Mà \(A=\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}\)nên \(2A=\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4+z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4+x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)\(\ge\frac{\frac{\left(y^2+z^2\right)^2}{2}}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{\frac{\left(y^2+z^2\right)^2}{2}}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{\frac{\left(z^2+x^2\right)^2}{2}}{\left(z^2+x^2\right)\left(z+x\right)}\)
\(=\frac{1}{2}\left(\frac{x^2+y^2}{x+y}+\frac{y^2+z^2}{y+z}+\frac{z^2+x^2}{z+x}\right)\)\(\ge\frac{1}{2}\left(\frac{\frac{\left(x+y\right)^2}{2}}{x+y}+\frac{\frac{\left(y+z\right)^2}{2}}{y+z}+\frac{\frac{\left(z+x\right)^2}{2}}{z+x}\right)\)\(=\frac{1}{4}\left[\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\right]=\frac{1}{2}\left(x+y+z\right)=\frac{1}{2}\)(Do theo giả thiết thì x + y + z = 1)
\(\Rightarrow A\ge\frac{1}{4}\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)
Bài này t làm rồi, "nhẹ" không ấy mà :|
Dự đoán khi \(x=y=z=\frac{1}{3}\Rightarrow A=\frac{1}{4}\). Ta c/m nó là GTNN của A
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(A=Σ\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{Σ\left(x^2+y^2\right)\left(x+y\right)}\)
Cần chứng minh BĐT \(\frac{\left(x^2+y^2+z^2\right)^2}{Σ\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{x+y+z}{4}\)
\(\Leftrightarrow4\left(x^2+y^2+z^2\right)^2\ge\left(x+y+z\right)Σ\left(2x^3+x^2y+x^2z\right)\)
\(\LeftrightarrowΣ\left(2x^4-3x^3y-3x^3z+6x^2y^2-2x^2yz\right)\ge0\)
\(\LeftrightarrowΣ\left(2x^4-3x^3y-3x^3z+4x^2y^2\right)+Σ\left(2x^2y^2-2x^2yz\right)\ge0\)
\(\LeftrightarrowΣ\left(x^4-3x^3y+4x^2y^2-3xy^3+y^4\right)+Σ\left(x^2z^2-2z^2xy+y^2z^2\right)\ge0\)
\(\LeftrightarrowΣ\left(x-y\right)^2\left(x^2-xy+y^2\right)+Σz^2\left(x-y\right)^2\ge0\)
BĐT cuối đúng tức ta có \(A_{Min}=\frac{1}{4}\Leftrightarrow x=y=z=\frac{1}{3}\)
P/s: Nguồn lời giải Câu hỏi của Vo Trong Duy - Toán lớp 9 - Học toán với OnlineMath, rảnh quá ngồi gõ lại :V
Lời giải:
Sửa: $x^2\geq y^2+z^2$
Áp dụng BĐT Cauchy-Schwarz:
$P\geq \frac{y^2+z^2}{x^2}+\frac{7x^2}{2}.\frac{4}{y^2+z^2}+2007$
$=\frac{y^2+z^2}{x^2}+\frac{14x^2}{y^2+z^2}+2007$
$=\frac{y^2+z^2}{x^2}+\frac{x^2}{y^2+z^2}+\frac{13x^2}{y^2+z^2}+2007$
$\geq 2+\frac{13x^2}{y^2+z^2}+2007$ (áp dụng BĐT Cô-si)
$\geq 2+13+2007=2022$ (do $x^2\geq y^2+z^2$)
Vậy $P_{\min}=2022$