\(\frac{1}{a+2}+\frac{3}{b+4}\le\frac{c+1}{c+3}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2020

Bài 4: Áp dụng bất đẳng thức AM - GM, ta có: \(P=\text{​​}\Sigma_{cyc}a\sqrt{b^3+1}=\Sigma_{cyc}a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\Sigma_{cyc}a.\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}=\Sigma_{cyc}\frac{ab^2+2a}{2}=\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)Giả sử b là số nằm giữa a và c thì \(\left(b-a\right)\left(b-c\right)\le0\Rightarrow b^2+ac\le ab+bc\)\(\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2=b\left(a+c\right)^2=b\left(3-b\right)^2\)

Ta sẽ chứng minh: \(b\left(3-b\right)^2\le4\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(b-4\right)\left(b-1\right)^2\le0\)(đúng với mọi \(b\in[0;3]\))

Từ đó suy ra \(\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\le\frac{1}{2}.4+3=5\)

Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị

26 tháng 10 2020

Bài 1: Đặt \(a=xc,b=yc\left(x,y>0\right)\)thì điều kiện giả thiết trở thành \(\left(x+1\right)\left(y+1\right)=4\)

Khi đó  \(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)\(=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)

Có: \(\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-\left(x+y\right)\)

Đặt \(t=x+y\left(0< t< 3\right)\Rightarrow xy=3-t\le\frac{\left(x+y\right)^2}{4}=\frac{t^2}{4}\Rightarrow t\ge2\)(do t > 0)

Lúc đó \(P=\frac{t^2+3t-2\left(3-t\right)}{3-t+3t+9}+\frac{3-t}{t}=\frac{t}{2}+\frac{3}{t}-\frac{3}{2}\ge2\sqrt{\frac{t}{2}.\frac{3}{t}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)với \(2\le t< 3\)

Vậy \(MinP=\sqrt{6}-\frac{3}{2}\)đạt được khi \(t=\sqrt{6}\)hay (x; y) là nghiệm của hệ \(\hept{\begin{cases}x+y=\sqrt{6}\\xy=3-\sqrt{6}\end{cases}}\)

Ta lại có \(P=\frac{t^2-3t+6}{2t}=\frac{\left(t-2\right)\left(t-3\right)}{2t}+1\le1\)(do \(2\le t< 3\))

Vậy \(MaxP=1\)đạt được khi t = 2 hay x = y = 1

31 tháng 5 2016

Đặt  \(x=\frac{2}{a};\) \(y=\frac{4}{b};\)  \(z=\frac{1}{c}\)  

(Vì  \(a,b,c\in R^+\) nên suy ra  \(x,y,z>0\) )

Khi đó, điều kiện (giả thiết) đã cho trở thành  \(\frac{x^3+y^3}{xyz}+2\left(\frac{x}{y}+\frac{y}{x}\right)=6\)   \(\left(\text{*}\right)\)

Với điều kiện mà  \(x,y,z\)  nhận được trên thì ta dễ dàng chứng minh được:  

\(x^3+y^3\ge xy\left(x+y\right)\)  

Do đó,   \(\frac{x^3+y^3}{xyz}\ge\frac{xy\left(x+y\right)}{xyz}=\frac{x+y}{z}\)

Mặt khác, nhờ vào bđt Cauchy và yếu tố chủ chốt là  \(x,y>0\), ta có đánh giá sau:  \(\frac{x}{y}+\frac{y}{x}\ge2\) 

nên  \(6=\frac{x^3+y^3}{xyz}+2\left(\frac{x}{y}+\frac{y}{x}\right)\ge\frac{x+y}{z}+4\)

\(\Rightarrow\)  \(0< \frac{x+y}{z}\le2\)

\(--------------\)

Ta có:

\(P=\frac{x}{y+2z}+\frac{y}{2z+x}+\frac{4z}{x+y}\ge\frac{x^2}{xy+2xz}+\frac{y^2}{2yz+xy}+\frac{4z}{x+y}\)

\(\ge\frac{\left(x+y\right)^2}{2xy+2z\left(x+y\right)}+\frac{4z}{x+y}\ge\frac{\left(x+y\right)^2}{\frac{\left(x+y\right)^2}{2}+2z\left(x+y\right)}+\frac{4z}{x+y}=\frac{2\left(x+y\right)}{x+y+4z}+\frac{4z}{x+y}\)

Tóm lại:  \(P\ge\frac{\frac{2\left(x+y\right)}{z}}{\frac{x+y}{z}+4}+\frac{4}{\frac{x+y}{z}}\)

\(--------------\)

Đặt  \(t=\frac{x+y}{z}\)  \(\left(0< t\le2\right)\). Ta biểu diễn bất đẳng thức trên dưới dạng biến  \(t\)  như sau:

\(P\ge\frac{2t}{t+4}+\frac{4}{t}=\frac{2t}{t+4}+\frac{4}{t+4}+\frac{8}{t\left(t+4\right)}+\frac{8}{t\left(t+4\right)}\ge3\sqrt[3]{\frac{64t}{t\left(t+4\right)^3}}+\frac{8}{t\left(t+4\right)}\)

\(\ge\frac{12}{t+4}+\frac{8}{t\left(t+4\right)}\ge\frac{12}{2+4}+\frac{8}{2.6}=\frac{8}{3}\)

Dấu  \("="\) xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}x=y\\\frac{x+y}{z}=2\end{cases}}\)  \(\Leftrightarrow\)  \(x=y=z\)  \(\Leftrightarrow\)  \(2a=b=4c\)

Vậy,  \(P\) đạt giá trị nhỏ nhất là  \(\frac{8}{3}\) khi  \(2a=b=4c\)

6 tháng 2 2021

Áp dụng BĐT Cauchy - Schwarz và Cauchy ta có:

\(P=\frac{1}{a^2}\left(b^2+c^2\right)+a^2\left(\frac{1}{b^2}+\frac{1}{c^2}\right)\)

\(\ge\frac{b^2+c^2}{a^2}+a^2\cdot\frac{9}{b^2+c^2}\) (Cauchy - Schwarz)

\(=\left(\frac{b^2+c^2}{a^2}+\frac{a^2}{b^2+c^2}\right)+8\cdot\frac{a^2}{b^2+c^2}\)

\(\ge2\sqrt{\frac{b^2+c^2}{a^2}\cdot\frac{a^2}{b^2+c^2}}+8\cdot\frac{b^2+c^2}{b^2+c^2}\) (BĐT Cauchy)

\(=2+8=10\)

Dấu "=" xảy ra khi: \(a=b\sqrt{2}=c\sqrt{2}\)

Vậy Min(P) = 10 khi \(a=b\sqrt{2}=c\sqrt{2}\)

11 tháng 6 2019

a + b + c= 1 \(\Rightarrow\)1 - a = b + c > 0

Tương tự : 1 - b > 0 ; 1 - c > 0

Mà 1 + a = 1 + ( 1 - b - c ) = ( 1- b ) + ( 1 - c ) \(\ge\)\(2\sqrt{\left(1-b\right)\left(1-c\right)}\)

Tương tự : \(1+b\ge2\sqrt{\left(1-a\right)\left(1-c\right)}\)\(1+c\ge2\sqrt{\left(1-a\right)\left(1-b\right)}\)

\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge8\sqrt{\left(1-a\right)^2\left(1-b\right)^2\left(1-c\right)^2}=8\left(1-a\right)\left(1-b\right)\left(1-c\right)\)

\(\Rightarrow A=\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\ge8\)

Dấu " = : xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

Vậy GTNN của A là 8 \(\Leftrightarrow a=b=c=\frac{1}{3}\)

12 tháng 6 2019

Cách khác:

\(A=\frac{\left[\left(a+b\right)+\left(a+c\right)\right]\left[\left(b+c\right)+\left(b+a\right)\right]\left[\left(c+a\right)+\left(c+b\right)\right]}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Áp dụng BĐT Cô si cho 2 số ta được:

\(A\ge\frac{8\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=8\)

"=" <=> a = b = c = 1/3

Kết luận..

6 tháng 11 2016

\(P=\left(5a+\frac{2}{b+c}\right)^2+\left(5b+\frac{2}{c+a}\right)^2+\left(5c+\frac{2}{a+b}\right)^2\)

\(=4\text{∑}\frac{1}{\left(a+b\right)^2}+20\text{ }\text{∑}\left(\frac{a}{b+c}\right)+75\)

\(\ge2\text{∑}\frac{1}{a^2+b^2}+20\cdot\frac{3}{2}+75\)

\(\ge2\cdot\frac{9}{2\left(a^2+b^2+c^2\right)}+105=108\)

Dấu = khi a=b=c=1

7 tháng 11 2016

bạn dùng cách gì á mình k hiểu ?

9 tháng 5 2017

để biểu thức cho đơn giản , ta đặt x=a+1,y=b+1,z=c+1(x,y,z>0)

thì giả thiết thành \(\frac{1}{x+1}+\frac{3}{y+3}\le\frac{z}{z+2}\) .Tìm min xyz 

Áp dụng bất đẳng thức cauchy:\(\frac{z}{z+2}\ge\frac{1}{x+1}+\frac{3}{y+3}\ge2\sqrt{\frac{3}{\left(x+1\right)\left(y+3\right)}}\)(1)

từ giả thiết :\(\frac{1}{x+1}\le\frac{z}{z+2}-\frac{3}{y+3}\Leftrightarrow1-\frac{1}{x+1}\ge1-\frac{z}{z+2}+\frac{3}{y+3}\)

\(\Leftrightarrow\frac{x}{x+1}\ge\frac{2}{z+2}+\frac{3}{y+3}\)

Áp dụng bất đẳng thức cauchy 1 lần nữa: \(\frac{x}{x+1}\ge\frac{2}{z+2}+\frac{3}{y+3}\ge2\sqrt{\frac{6}{\left(z+2\right)\left(y+3\right)}}\)(2)

tương tự ta cũng có: \(\frac{y}{y+3}\ge2\sqrt{\frac{2}{\left(z+2\right)\left(x+1\right)}}\)(3),

cả 2 vế các bất đẳng thức (1),(2)và (3) đều dương, nhân vế với vế: 

\(\frac{xyz}{\left(x+1\right)\left(y+3\right)\left(z+2\right)}\ge\frac{8.6}{\left(x+1\right)\left(z+2\right)\left(y+3\right)}\)

\(\Leftrightarrow xyz\ge48\)

Dấu = xảy ra khi x=2,y=6,z=4 hay a=1,b=5,z=3

17 tháng 10 2020

Ta có: \(0< a^2+b^2+c^2=3\Rightarrow a^2,b^2,c^2< 3\Rightarrow a,b,c< \sqrt{3}< 2\)

Xét bất đẳng thức phụ: \(2a+\frac{1}{a}\ge\frac{1}{2}a^2+\frac{5}{2}\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{\left(a-1\right)^2\left(2-a\right)}{2a}\ge0\)*đúng*

Áp dụng, ta được: \(P\ge\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{5}{2}.3=9\)

Đẳng thức xảy ra khi a = b = c = 1