Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a + b + c= 1 \(\Rightarrow\)1 - a = b + c > 0
Tương tự : 1 - b > 0 ; 1 - c > 0
Mà 1 + a = 1 + ( 1 - b - c ) = ( 1- b ) + ( 1 - c ) \(\ge\)\(2\sqrt{\left(1-b\right)\left(1-c\right)}\)
Tương tự : \(1+b\ge2\sqrt{\left(1-a\right)\left(1-c\right)}\); \(1+c\ge2\sqrt{\left(1-a\right)\left(1-b\right)}\)
\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge8\sqrt{\left(1-a\right)^2\left(1-b\right)^2\left(1-c\right)^2}=8\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
\(\Rightarrow A=\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\ge8\)
Dấu " = : xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
Vậy GTNN của A là 8 \(\Leftrightarrow a=b=c=\frac{1}{3}\)
Cách khác:
\(A=\frac{\left[\left(a+b\right)+\left(a+c\right)\right]\left[\left(b+c\right)+\left(b+a\right)\right]\left[\left(c+a\right)+\left(c+b\right)\right]}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Áp dụng BĐT Cô si cho 2 số ta được:
\(A\ge\frac{8\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=8\)
"=" <=> a = b = c = 1/3
Kết luận..
Đặt \(x=\frac{2}{a};\) \(y=\frac{4}{b};\) \(z=\frac{1}{c}\)
(Vì \(a,b,c\in R^+\) nên suy ra \(x,y,z>0\) )
Khi đó, điều kiện (giả thiết) đã cho trở thành \(\frac{x^3+y^3}{xyz}+2\left(\frac{x}{y}+\frac{y}{x}\right)=6\) \(\left(\text{*}\right)\)
Với điều kiện mà \(x,y,z\) nhận được trên thì ta dễ dàng chứng minh được:
\(x^3+y^3\ge xy\left(x+y\right)\)
Do đó, \(\frac{x^3+y^3}{xyz}\ge\frac{xy\left(x+y\right)}{xyz}=\frac{x+y}{z}\)
Mặt khác, nhờ vào bđt Cauchy và yếu tố chủ chốt là \(x,y>0\), ta có đánh giá sau: \(\frac{x}{y}+\frac{y}{x}\ge2\)
nên \(6=\frac{x^3+y^3}{xyz}+2\left(\frac{x}{y}+\frac{y}{x}\right)\ge\frac{x+y}{z}+4\)
\(\Rightarrow\) \(0< \frac{x+y}{z}\le2\)
\(--------------\)
Ta có:
\(P=\frac{x}{y+2z}+\frac{y}{2z+x}+\frac{4z}{x+y}\ge\frac{x^2}{xy+2xz}+\frac{y^2}{2yz+xy}+\frac{4z}{x+y}\)
\(\ge\frac{\left(x+y\right)^2}{2xy+2z\left(x+y\right)}+\frac{4z}{x+y}\ge\frac{\left(x+y\right)^2}{\frac{\left(x+y\right)^2}{2}+2z\left(x+y\right)}+\frac{4z}{x+y}=\frac{2\left(x+y\right)}{x+y+4z}+\frac{4z}{x+y}\)
Tóm lại: \(P\ge\frac{\frac{2\left(x+y\right)}{z}}{\frac{x+y}{z}+4}+\frac{4}{\frac{x+y}{z}}\)
\(--------------\)
Đặt \(t=\frac{x+y}{z}\) \(\left(0< t\le2\right)\). Ta biểu diễn bất đẳng thức trên dưới dạng biến \(t\) như sau:
\(P\ge\frac{2t}{t+4}+\frac{4}{t}=\frac{2t}{t+4}+\frac{4}{t+4}+\frac{8}{t\left(t+4\right)}+\frac{8}{t\left(t+4\right)}\ge3\sqrt[3]{\frac{64t}{t\left(t+4\right)^3}}+\frac{8}{t\left(t+4\right)}\)
\(\ge\frac{12}{t+4}+\frac{8}{t\left(t+4\right)}\ge\frac{12}{2+4}+\frac{8}{2.6}=\frac{8}{3}\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x=y\\\frac{x+y}{z}=2\end{cases}}\) \(\Leftrightarrow\) \(x=y=z\) \(\Leftrightarrow\) \(2a=b=4c\)
Vậy, \(P\) đạt giá trị nhỏ nhất là \(\frac{8}{3}\) khi \(2a=b=4c\)
\(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=1\end{matrix}\right.\) \(\Leftrightarrow0< a,b,c< 1\)
\(B=\dfrac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}=\dfrac{\left[\left(a+b\right)+\left(a+c\right)\right]\left[\left(a+b\right)+\left(b+c\right)\right]\left[\left(c+a\right)+\left(c+b\right)\right]}{\left(a+b+c-a\right)\left(a+b+c-b\right)\left(a+b+c-c\right)}\)\(\left\{{}\begin{matrix}a+b=x\\b+c=y\\c+a=z\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=2\\B=\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\end{matrix}\right.\)
\(B>0;B^2=\dfrac{\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2}{\left(xyz\right)^2}=\dfrac{\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2}{\left(xyz\right)^2}=\dfrac{\left(x+y\right)^2}{xy}.\dfrac{\left(y+z\right)^2}{yz}.\dfrac{\left(z+x\right)^2}{zx}\)\(\left\{{}\begin{matrix}\left(x+y\right)^2\ge4xy\\\left(y+z\right)^2\ge4yz\\\left(z+x\right)^2\ge4zx\end{matrix}\right.\) \(\Leftrightarrow B^2\ge64;B\ge8\) khi x=y=z;a=b=c=1/3
Ồ sorry bạn nhiều, chỗ đấy bị lỗi kĩ thuật rồi, mình sửa lại nhé :
\(M\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)
Lại có : \(\frac{ab+bc+ca}{2}\ge\frac{3\sqrt{a^3b^3c^3}}{2}=\frac{3}{2}\)
Do đó : \(M\ge\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Ta có : \(\frac{1}{a^3\left(b+c\right)}=\frac{\frac{1}{a^2}}{a\left(b+c\right)}=\frac{\left(\frac{1}{a}\right)^2}{a\left(b+c\right)}\)
Tương tự : \(\frac{1}{b^3\left(a+c\right)}=\frac{\left(\frac{1}{b}\right)^2}{b\left(a+c\right)}\) , \(\frac{1}{c^3\left(a+b\right)}=\frac{\left(\frac{1}{c}\right)^2}{c\left(a+b\right)}\)
Ta thấy : \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
Áp dụng BĐT Svacxo ta có :
\(M=\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^2\left(a+c\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\) \(\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Vâỵ \(M_{min}=\frac{3}{2}\) tại \(a=b=c=1\)