K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 3 2022

\(P\ge3\sqrt[3]{\dfrac{abc\left(a^2+1\right)^2\left(b^2+1\right)^2\left(c^2+1\right)^2}{a^2b^2c^2\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}}=3\sqrt[3]{\dfrac{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}{abc}}\)

\(P\ge3\sqrt[3]{\dfrac{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}{\left(\dfrac{a+b+c}{3}\right)^3}}=9\sqrt[3]{\dfrac{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}{\left(a+b+c\right)^3}}\ge9\sqrt[3]{\dfrac{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}{2\left(a+b+c\right)^2}}\)

Theo nguyên lý Dirichlet, trong 3 số \(a^2;b^2;c^2\) luôn có ít nhất 2 số cùng phía so với \(\dfrac{4}{9}\)

Không mất tính tổng quát, giả sử đó là \(a^2;b^2\)

\(\Rightarrow\left(a^2-\dfrac{4}{9}\right)\left(b^2-\dfrac{4}{9}\right)\ge0\)

\(\Leftrightarrow a^2b^2+\dfrac{16}{81}\ge\dfrac{4}{9}a^2+\dfrac{4}{9}b^2\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\dfrac{13}{9}a^2+\dfrac{13}{9}b^2+\dfrac{65}{81}\)

\(\Rightarrow\left(a^2+1\right)\left(b^2+1\right)\ge\dfrac{13}{9}\left(a^2+b^2+\dfrac{5}{9}\right)\)

\(\Rightarrow\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\dfrac{13}{9}\left(a^2+b^2+\dfrac{5}{9}\right)\left(c^2+1\right)\)

\(=\dfrac{13}{9}\left(a^2+b^2+\dfrac{4}{9}+\dfrac{1}{9}\right)\left(\dfrac{4}{9}+\dfrac{4}{9}+c^2+\dfrac{1}{9}\right)\)

\(\ge\dfrac{13}{9}\left(\dfrac{2}{3}a+\dfrac{2}{3}b+\dfrac{2}{3}c+\dfrac{1}{9}\right)^2\)

\(\Rightarrow P\ge9\sqrt[3]{\dfrac{\dfrac{13}{9}\left(\dfrac{2}{3}\left(a+b+c\right)+\dfrac{1}{9}\right)^2}{2\left(a+b+c\right)^2}}=9\sqrt[3]{\dfrac{13}{18}\left(\dfrac{2}{3}+\dfrac{1}{9\left(a+b+c\right)}\right)^2}\)

\(P\ge9\sqrt[3]{\dfrac{13}{18}\left(\dfrac{2}{3}+\dfrac{1}{9.2}\right)^2}=\dfrac{13}{2}\)

\(P_{min}=\dfrac{13}{2}\) khi \(a=b=c=\dfrac{2}{3}\)

17 tháng 3 2022

Thầy cho em hỏi cơ sở để ta nghĩ ra dòng

\(\left(a^2-\dfrac{4}{9}\right)\left(b^2-\dfrac{4}{9}\right)\ge0\) này là gì ạ?

Theo cá nhân em thấy cách giải này hay và dễ hiểu, và có lẽ cũng dựa vào điểm rơi nhưng hình như lời giải chưa tự nhiên lắm thì phải ạ. Thầy có cách nào nữa không thầy? Em cảm ơn ạ.

 

NV
21 tháng 8 2021

\(Q=\sum\dfrac{\left(a+b\right)^2}{\sqrt{2\left(b+c\right)^2+bc}}\ge\sum\dfrac{\left(a+b\right)^2}{\sqrt{2\left(b+c\right)^2+\dfrac{1}{4}\left(b+c\right)^2}}=\dfrac{2}{3}\sum\dfrac{\left(a+b\right)^2}{b+c}\)

\(Q\ge\dfrac{2}{3}.\dfrac{\left(a+b+b+c+c+a\right)^2}{a+b+b+c+c+a}=\dfrac{4}{3}\left(a+b+c\right)=\dfrac{4}{3}\)

21 tháng 8 2021

∑ cái này nghĩa là gì ạ

NV
23 tháng 1 2021

\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)

\(\Leftrightarrow9abc\ge12\left(ab+bc+ca\right)-27\)

\(\Rightarrow abc\ge\dfrac{4}{3}\left(ab+bc+ca\right)-3\)

\(P\ge\dfrac{9}{a\left(b^2+bc+c^2\right)+b\left(c^2+ca+a^2\right)+c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}=\dfrac{9}{\left(ab+bc+ca\right)\left(a+b+c\right)}+\dfrac{abc}{ab+bc+ca}\)

\(\Rightarrow P\ge\dfrac{3}{ab+bc+ca}+\dfrac{abc}{ab+bc+ca}=\dfrac{3+abc}{ab+bc+ca}\)

\(\Rightarrow P\ge\dfrac{3+\dfrac{4}{3}\left(ab+bc+ca\right)-3}{ab+bc+ca}=\dfrac{4}{3}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

31 tháng 3 2022

\(P=2\Sigma a+\Sigma\dfrac{1}{a}=\Sigma a+\Sigma a+\Sigma\dfrac{1}{a}\ge3.\sqrt[3]{\left(\Sigma a\right)^2.\Sigma\dfrac{1}{a}}\)

\(Q=\left(\Sigma a\right)^2.\Sigma\dfrac{1}{a}=\left(3+2\Sigma ab\right).\Sigma\dfrac{1}{a}=3\Sigma\dfrac{1}{a}+4\Sigma a+2\Sigma\dfrac{ab}{c}\ge3\Sigma\dfrac{1}{a}+6\Sigma a=3\left(\Sigma\dfrac{1}{a}+2\Sigma a\right)=3P\)\(\Rightarrow\)\(P\ge3\sqrt[3]{3P}\)   \(\Leftrightarrow P^3\ge81P\Leftrightarrow P^2\ge81\left(P>0\right)\Leftrightarrow P\ge9\)

" = " \(\Leftrightarrow a=b=c=1\)

 

31 tháng 3 2022

Vì $\large a,b,c \in\mathbb{N^*}$ và $\large a^2+b^2+c^2=3\Rightarrow \left\{\begin{matrix} a<\sqrt{3} & \\ b<\sqrt{3} & \\ c<\sqrt{3} & \end{matrix}\right.$

Ta chứng minh bất đẳng thức phụ sau: 

Với $0 <x<\sqrt{3}$ thì $2x+\frac{1}{x} \ge x^2.\frac{1}{2}+\frac{5}{2}(*)$

Thật vậy $(*)$ $\large \Leftrightarrow (x-2)(x-1)^2 \le0$

Do $\large x<\sqrt{3}\Leftrightarrow x<2\Leftrightarrow (x-2)(x-1)^2<0$ (Luôn đúng)

Do đó bất đẳng thức được chứng minh 

Dấu $"="$ xảy ra khi $x=1$

Trở lại bài toán: 

Áp dụng BĐT $(*)$ ta được:

$\large 2a+\frac{1}{a}+2b+\frac{1}{b}+2c+\frac{1}{c}\ge\frac{1}{2}(a^2+b^2+c^2)+\frac{15}{2}=9$

Do $a^2+b^2+c^2=3$

Vậy $GTNN=9$

Dấu $"="$ xảy ra khi: $a=b=c=1$

 

 

27 tháng 11 2018

mai lam

16 tháng 12 2018

Áp dụng BĐT AM-GM: \(VT\le\sum\dfrac{1}{\sqrt{a^2+1}.\sqrt{2a}.2\sqrt{bc}}=\sum\dfrac{1}{2\sqrt{2}\sqrt{a^2+1}}\)

Ta đi chứng minh \(\dfrac{1}{\sqrt{a^2+1}}+\dfrac{1}{\sqrt{b^2+1}}+\dfrac{1}{\sqrt{c^2+1}}\le\dfrac{3}{\sqrt{2}}\)

Giả sử c=max{a, b, c}.Suy ra \(c\ge1\) nên \(ab\le1\). Ta có bổ đề:

\(\dfrac{1}{\sqrt{a^2+1}}+\dfrac{1}{\sqrt{b^2+1}}\le\dfrac{2}{\sqrt{1+ab}}\)(*)

#cm: Áp dụng Bunyakovsky: \(VT_{(*)} \)\(\le\sqrt{2\left(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}\right)}\)

Xét \(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}-\dfrac{2}{ab+1}=\dfrac{\left(a-b\right)^2\left(ab-1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\le0\)

Nên \(VT_{(*)}\)\(\le\sqrt{2.\dfrac{2}{ab+1}}=\dfrac{2}{\sqrt{ab+1}}\), suy ra đpcm.

Do đó \(VT\le\dfrac{2}{\sqrt{ab+1}}+\dfrac{1}{\sqrt{c^2+1}}=2\sqrt{\dfrac{c}{c+1}}+\dfrac{1}{\sqrt{c^2+1}}\)

# cm: \(2\sqrt{\dfrac{c}{c+1}}+\dfrac{1}{\sqrt{c^2+1}}\le\dfrac{3}{\sqrt{2}}\)

\(\Leftrightarrow2\sqrt{2c\left(c^2+1\right)}+\sqrt{2c+2}\le3\sqrt{\left(c+1\right)\left(c^2+1\right)}\)

\(\Leftrightarrow8c^3+10c+2+8\sqrt{c\left(c+1\right)\left(c^2+1\right)}\le9\left(c^3+c^2+c+1\right)\)

hay \(8\sqrt{\left(c^2+c\right)\left(c^2+1\right)}\le c^3+9c^2-c+7\) ($)

Áp dụng BĐT AM-GM cho VT của ($):

\(8\sqrt{\left(c^2+c\right)\left(c^2+1\right)}\le4\left(2c^2+c+1\right)\) .Ta chứng minh

\(8c^2+4c+4\le c^3+9c^2-c+7\) hay \(\left(c-1\right)^2\left(c+3\right)\ge0\) (đúng)

Vậy ta có đpcm. Dấu = xảy ra khi a=b=c=1

14 tháng 3 2022

ko biết mk làm có đúng ko nhma có gì sai thì đừng trách mk nhé

\(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\ge\dfrac{63}{a^2+b^2+c^2}\)

\(6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{a}{ac}\right)+2021\ge\dfrac{54}{ab+bc+ac}+2021\ge\dfrac{54}{a^2+b^2+c^2}+2021\)

<=>\(\dfrac{1}{a^2+b^2+c^2}\ge\dfrac{2021}{9}\)

\(p^2=\left(\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\right)^2\)

áp dụng bđt \(a^2+b^2+c^2\ge\dfrac{1}{3}\left(a+b+c\right)^2\)

\(p^2\le3.\left(\dfrac{1}{3\left(2a^2+b^2\right)}+\dfrac{1}{3\left(2b^2+c^2\right)}+\dfrac{1}{3\left(2c^2+a^2\right)}\right)=\dfrac{1}{2a^2+b^2}+\dfrac{1}{2b^2+c^2}+\dfrac{1}{2c^2+a^2}\)

\(< =>p^2\le\dfrac{9}{2a^2+b^2+2b^2+c^2+2c^2+a^2}\)

<=> \(p^2\le3.\dfrac{1}{a^2+b^2+c^2}=\dfrac{2021}{3}< =>p\le\sqrt{\dfrac{2021}{3}}\)

dấu bằng xảy ra khi \(a=b=c=\sqrt{\dfrac{3}{2021}}\)

NV
15 tháng 3 2022

\(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)+2021\le6\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)+2021\)

\(\Rightarrow2021\ge\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{1}{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\le\sqrt{2021.3}=\sqrt{6063}\)

Từ đó:

\(\sqrt{3\left(2a^2+b\right)}=\sqrt{\left(2+1\right)\left(2a^2+b^2\right)}\ge\sqrt{\left(2a+b\right)^2}=2a+b\)

\(\Rightarrow\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}\le\dfrac{1}{2a+b}=\dfrac{1}{a+a+b}\le\dfrac{1}{9}\left(\dfrac{2}{a}+\dfrac{1}{b}\right)\)

Tương tự: \(\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}\le\dfrac{1}{9}\left(\dfrac{2}{b}+\dfrac{1}{c}\right)\) ; \(\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\le\dfrac{1}{9}\left(\dfrac{2}{c}+\dfrac{1}{a}\right)\)

Cộng vế:

\(\Rightarrow P\le\dfrac{1}{9}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)=\dfrac{1}{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{\sqrt{6063}}{3}\)

\(P_{max}=\dfrac{\sqrt{6063}}{3}\) khi \(a=b=c=\dfrac{3}{\sqrt{6063}}\)

25 tháng 3 2018

thi hsg co cao khong

25 tháng 3 2018

dang no giong bai bdt vap LHP chuyen nam 2017-2018

NV
24 tháng 8 2021

\(\dfrac{1}{\left(a+b+a+c\right)^2}\le\dfrac{1}{4\left(a+b\right)\left(a+c\right)}=\dfrac{1}{4\left(a^2+ab+bc+ca\right)}\le\dfrac{1}{64}\left(\dfrac{1}{a^2}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\)

\(\le\dfrac{1}{64}\left(\dfrac{1}{a^2}+\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=\dfrac{1}{64}\left(\dfrac{2}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\)

Tương tự và cộng lại:

\(P\le\dfrac{1}{64}\left(\dfrac{4}{a^2}+\dfrac{4}{b^2}+\dfrac{4}{c^2}\right)=\dfrac{1}{16}.3=\dfrac{3}{16}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

 

24 tháng 8 2021

Áp dụng bđt: \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(1\right)\)

\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\)

\(\Rightarrow P\le\dfrac{1}{16}\left[\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)^2+\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)^2+\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)^2\right]\)\(\Rightarrow16P\le\dfrac{2}{\left(a+b\right)^2}+\dfrac{2}{\left(b+c\right)^2}+\dfrac{2}{\left(a+c\right)^2}+\dfrac{2}{\left(a+b\right)\left(b+c\right)}+\dfrac{2}{\left(a+b\right)\left(b+c\right)}+\dfrac{2}{\left(b+c\right)\left(c+a\right)}\)

Áp dụng: \(x^2+y^2+z^2\ge xy+yz+xz\left(2\right)\) với a+b=x,b+c=y,c+a=z

\(\Rightarrow16P\le\dfrac{4}{\left(a+b\right)^2}+\dfrac{4}{\left(b+c\right)^2}+\dfrac{4}{\left(c+a\right)^2}\)

Ta có: \(\dfrac{1}{\left(a+b\right)^2}\le4.16.\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2\)(do (1))

\(\Rightarrow16P\le\dfrac{1}{4}.16\left[\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2+\left(\dfrac{1}{b}+\dfrac{1}{c}\right)^2+\left(\dfrac{1}{c}+\dfrac{1}{a}\right)^2\right]=\dfrac{1}{4}\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ca}\right)\le\dfrac{1}{4}.4.\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=3\)(do(2) và \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=3\))

\(\Rightarrow P\le\dfrac{3}{16}\)

\(ĐTXR\Leftrightarrow a=b=c=1\)