Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với 2 số dương bất kì: ( 1 )
\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)Vì x và y dương nên \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\forall x;y\)
Áp dụng ( 1 ): \(\frac{4}{2x+y+z}=\frac{4}{\left(x+y\right)+\left(x+z\right)}\le\frac{1}{x+y}+\frac{1}{x+z}\)
Mà: \(\frac{1}{x+y}+\frac{1}{x+z}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}+\frac{1}{z}\right)=\frac{1}{4}\)\(=\frac{1}{4}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Nên: \(\frac{1}{2x+y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Tương tự ta có: \(\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\)
Và \(\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Cộng vế với vế các bất đẳng thức kết hợp với điều kiện \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\) nên ta có đpcm
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Tương tự rồi cộng từng vế, ta có:
\(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=\frac{4}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\)
=> ĐPCM
ĐKXĐ : \(x>\frac{1}{2};y>\frac{1}{2};z>\frac{1}{2}\)
Áp dụng ( a+b)2 \(\ge4ab\)ta có :
( x+ 2y)2 = \(\left(\frac{2x+y}{2}+\frac{3y}{2}\right)^2\ge4.\left(\frac{2x+y}{2}\right).\frac{3y}{2}\)
\(\Rightarrow\left(x+2y\right)^2\ge3y\left(2x+y\right)\)
\(\Rightarrow\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\)
\(\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)
Tương tự : \(\frac{2y+z}{y\left(y+2\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right)\)
\(\frac{2z+x}{z.\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\)
=> \(A\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Ta có : \(\sqrt{\left(2x-1\right)1}\le\frac{2x-1+1}{2}\)
\(\Rightarrow\sqrt{2x-1}\le x\)
\(\Rightarrow\frac{1}{x}\le\frac{1}{\sqrt{2x-1}}\)
\(\frac{1}{y}\le\frac{1}{\sqrt{2y-1}}\)
\(\frac{1}{z}\le\frac{1}{\sqrt{2z-1}}\)
Do đó
A \(\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}\)
Vậy Max A = 3 khi x = y = z = 1
Theo Cô-si ta có:
\(3=\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le3\)
Xét:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\Sigma_{cyc}\frac{2x+y}{x\left(x+2y\right)}=\frac{1}{3}\left[\frac{\left(x-y\right)^2}{xy\left(x+2y\right)}+\frac{\left(y-z\right)^2}{yz\left(y+2z\right)}+\frac{\left(z-x\right)^2}{zx\left(z+2x\right)}\right]\ge0\)
\(\Rightarrow\Sigma_{cyc}\frac{2x+y}{x\left(x+2y\right)}\le3\)
a/ \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=\left(xy-\frac{1}{xy}\right)^2+4\ge4\)
Suy ra Min M = 4 . Dấu "=" xảy ra khi x=y=1/2
b/ Đề đúng phải là \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{3}{2}\)
Ta có \(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\Rightarrow x+y+z\ge\frac{3}{4}\)
Lại có \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.\frac{3}{4}}=\frac{3}{2}\)
Bạn tham khảo ở: https://hoc247.net/hoi-dap/toan-10/chung-minh-1-2x-y-z-1-x-2y-z-1-x-y-2z-1-neu-1-x-1-y-1-z-4-faq77921.html