Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CHÚ Ý: BÀI TOÁN SAU:
Nếu x+y+z=0 thì \(x^3+y^3+z^3=3xyz\)
Trở lại với bài toán: chú ý: a-1+b-1+c-1=0
=> \(\left(a-1\right)^3+\left(b-1\right)^3+\left(c-1\right)^3=3\left(a-1\right)\left(b-1\right)\left(c-1\right)\)
Ta phải CM: (a-1)(b-1)(c-1)\(\ge\)\(-\frac{1}{4}\)
đặt: x=a-1, y=b-1, z=c-1
khi đó bài toán trở thành: x+y+z=0, CM xyz\(\ge-\frac{1}{4}\)
Ta có: -y=x+z => CM xz(x+z)\(\le\frac{1}{4}\)
Áp dung BĐT Cauchy và biến đổi đồng nhất
tương tự với -x và -z cộng lại ta được DPCM
Bài 2. a/ \(1\le a,b,c\le3\) \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\), \(\left(c-1\right).\left(c-3\right)\le0\)
Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)
\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)
Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1
b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\)
Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)
Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay
\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)
Câu hỏi của Trần Đức Tuấn - Toán lớp 9 - Học toán với OnlineMath
Ta có: \(a+b+c=1\Rightarrow\hept{\begin{cases}a=1-b-c\\b=1-a-c\\c=1-a-b\end{cases}}\)
\(\Rightarrow\left(ab+c\right)\left(bc+a\right)\left(ac+b\right)\)\(=\left(ab+1-a-b\right)\left(bc+1-b-c\right)\left(ac+1-a-c\right)\)
\(=\left[\left(ab-a\right)-\left(b-1\right)\right]\left[\left(bc-b\right)-\left(c-1\right)\right]\left[\left(ac-c\right)-\left(a-1\right)\right]\)
\(=\left[a\left(b-1\right)-\left(b-1\right)\right]\left[b\left(c-1\right)-\left(c-1\right)\right]\left[c\left(a-1\right)-\left(a-1\right)\right]\)
\(=\left(a-1\right)\left(b-1\right)\left(c-1\right)\left(b-1\right)\left(a-1\right)\left(c-1\right)\)
\(=\left(a-1\right)^2\left(b-1\right)^2\left(c-1\right)^2\)
\(=\left(1-a\right)^2\left(1-b\right)^2\left(1-c\right)^2\)
Do \(-1\le a;b;c\le1\)
\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)+\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge0\)
\(\Leftrightarrow1-abc-a-b-c+ab+bc+ca+1+abc+b+c+c+ab+bc+ca\ge0\)
\(\Leftrightarrow2\left(ab+bc+ca\right)+2\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)+2\ge a^2+b^2+c^2\)
\(\Leftrightarrow\left(a+b+c\right)^2+2\ge a^2+b^2+c^2\)
\(\Leftrightarrow a^2+b^2+c^2\le2\)
Mà \(\left|a\right|;\left|b\right|;\left|c\right|\le1\Rightarrow\left\{{}\begin{matrix}a^4\le a^2\\b^6\le b^2\\c^8\le c^2\end{matrix}\right.\)
\(\Rightarrow a^4+b^6+c^8\le a^2+b^2+c^2\le2\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(-1;0;1\right)\) và các hoán vị