Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a. Theo ht 4' trg đm //, ta có: Rtđ= (R1.R2)/(R1+R2)= (3.6)/(3+6)=2 ôm
b.Theo ĐL ôm, ta có: I= U/Rtđ=24/2=12 A
I1=U/R1=24/3=8 ôm
I2=U/R2=24/6=4 ôm
2. a. Theo ht 4' trg đm //, ta có: Rtđ=(R1.R2.R3)/(R1+R2+R3)= (6.12.4)/(6+12+4)=13,09 ôm
b. Áp dụng ĐL Ôm, ta có: U=I.R=3.13,09=39,27 V
c. Theo ĐL Ôm, ta có:
I1=U/R1=39,27/6=6.545 A
I2=U/R2=39,27/12=3,2725 A
I3=U/R3=39,27/4=9.8175 A
\(\dfrac{1}{R_{tđ}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}=\dfrac{1}{R}+\dfrac{1}{R}+\dfrac{1}{R}=\dfrac{3}{R}\\ \Rightarrow R_{tđ}=\dfrac{R}{3}\)
Đề chưa rõ lắm nhé, bạn dựa vào để tính ...
MCD: R1//R2
\(R_{tđ}=\dfrac{R_1R_2}{R_1+R_2}=\dfrac{60\cdot120}{60+120}=40\left(\Omega\right)\)
Cho ba điện trở R1 = R2 = R3 = R mắc song song với nhau. Điện trở tương đương đương Rtđ của đoạn mạch đó có thể nhận giá trị nào trong các giá trị
A. Rtđ = R.
B. Rtđ = 2R.
C. Rtđ = 3R.
D. Rtđ = R/3
Giải thích:
\(\dfrac{1}{R_{tđ}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}=\dfrac{1}{R}+\dfrac{1}{R}+\dfrac{1}{R}=\dfrac{3}{R}\)
\(\Rightarrow R_{tđ}=\dfrac{R}{3}\Omega\)
Chọn D.
\(R_{tđ}=\dfrac{R_1.R_2}{R_1+R_2}=\dfrac{10.15}{10+15}=6\left(\Omega\right)\)
\(MCD:R1nt\left(R2//R3\right)\)
\(=>R=R1+R23=R1+\dfrac{R2\cdot R3}{R2+R3}=18+\dfrac{20\cdot30}{20+30}=30\Omega\)
\(=>I=I1=I23=\dfrac{U}{R}=\dfrac{12}{30}=0,4A\)
Ta có: \(U23=U2=U3=U-U1=12-\left(0,4\cdot18\right)=4,8V\)
\(=>\left\{{}\begin{matrix}I2=\dfrac{U2}{R2}=\dfrac{4,8}{20}=0,24A\\I3=\dfrac{U3}{R3}=\dfrac{4,8}{30}=0,16A\end{matrix}\right.\)
\(\dfrac{1}{R}=\dfrac{1}{R1}+\dfrac{1}{R2}+\dfrac{1}{R3}=\dfrac{1}{30}+\dfrac{1}{30}+\dfrac{1}{30}=\dfrac{1}{10}\Rightarrow R=10\Omega\)
Chọn A