Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔHBA vuông tại B
=>HB<HA
Vì AB<BC
nên HA<HC
=>HB<HA<HC
b: HA<HC
=>góc HCA<góc HAC
c: HA<HC
=>góc HCA<góc HAC
=>góc AHB>góc BHC
a: ΔHBA vuông tại B
=>HB<HA
AB<BC
=>HA<HC
=>HB<HA<HC
b: Vì HA<HC
nên góc HAC>góc HCA
a, Gọi giao điểm của BH với AE là I
Xét △ABH vuông tại A và △EBH vuông tại E
Có: AB = EB (gt)
BH là cạnh chung
=> △ABH = △EBH (ch-cgv)
Cách 1: (nếu ktra 1 tiết hoặc học kỳ)
=> ∠BAH = ∠EBH (2 góc tương ứng)
Xét △ABI và △EBI
Có: AB = EB (gt)
∠ABI = ∠EBI (cmt)
BI là cạnh chung
=> △ABI = △EBI (c.g.c)
=> AI = EI (2 cạnh tương ứng)
và ∠AIB = ∠EIB (2 góc tương ứng)
Mà ∠AIB + ∠EIB = 180o (2 góc kề bù)
=> ∠AIB = ∠EIB = 180o : 2 = 90o
Mà AI = EI (cmt)
=> BI là đường trung trực AE
=> BH là đường trung trực AE
Cách 2: (chỉ dùng cho học kỳ, không dùng cho 1 tiết, làm cho nhanh, ngắn)
Làm tiếp tục đến => △ABH = △EBH (ch-cgv)
=> AH = HE (2 cạnh tương ứng)
=> H thuộc đường trung trực của AE
Vì AB = BE (gt)
=> B thuộc đường trung trực AE
=> HB là đường trung trực của AE
b, Xét △HEC vuông tại H có: HC > HE (quan hệ giữa đường xiên và đường vuông góc)
=> HC > AH (AH = HE <= △ABH = △EBH)
c, Xét △ABC và △ADC cùng vuông tại A
Có: AC là cạnh chung
AB = AD (gt)
=> △ABC = △ADC (2cgv)
=> ∠ACB = ∠ACD (2 góc tương ứng) (1)
Xét △BDE vuông tại E và △BCA vuông tại A
Có: ∠ABC là góc chung
BE = BA (gt)
=> △BDE = △BCA (cgv-gnk)
=> ∠BDE = ∠BCA (2 góc tương ứng)
Mà ∠ACB = ∠ACD (cmt)
=> ∠BDE = ∠ACD (2)
Xét △ADH vuông tại A và △ECH vuông tại E
Có: AH = EH (cmt)
∠AHD = ∠EHC (2 góc đối đỉnh)
=> △ADH = △ECH (cgv-gnk)
=> DH = HC (2 cạnh tương ứng)
=> △HCD cân tại H
=> ∠HDC = ∠HCD (3)
Từ (1), (2), (3) => ∠HDC = ∠BDE
=> DH là phân giác BDC
d, Sai đề
a
Tam giác ABC cân tại A có \(\widehat{A}=40^0\Rightarrow\widehat{B}=\widehat{C}=70^0\)
Do \(\widehat{C}>\widehat{A}\left(70^0>40^0\right)\Rightarrow AB>BC\)
b
Do tam giác ABC cân tại A nên đường phân giác AD đồng thời là đường trung tuyến.
Có 2 trung tuyến AD và BE cắt nhau tại H nên H là trọng tâm.
=> CH cũng là trung tuyến.
=> ĐPCM
c
Xét \(\Delta ABK\) và \(\Delta ACK\) có:
\(AB=AC\)
\(\widehat{ABK}=\widehat{ACK}=90^0\)
AK là cạnh chung
\(\Rightarrow\Delta ABK=\Delta ACK\left(ch.cgv\right)\)
\(\Rightarrow BK=CK\)
\(\Rightarrow K\) nằm trên đường trung trực của BC,A cũng nằm trên đường trung trực của BC.
Mặt khác AD đồng thời là đường trung trực.Khi đó A,H,K thẳng hàng.
B A C D E F S
a) Tam giác ABD và EBD có:
Góc ABD = EBD (BD là phân giác)
Cạnh BA = BE (gt)
Cạnh BD chung
=> Tam giác ABD = EBD (c-g-c) (*)
b) Từ (*) => góc BED = 90 độ (= góc BAD)
=> tam giác EDC vuông tại E => cạnh huyền DC > cạnh góc vuông DE (1)
mà từ (*) => DE = AD (2)
Từ (1) và (2) => DC > AD
c) Tam giác BFC có hai đường cao CA và FE cắt nhau tại D => D là trực tâm
Đường BD đi qua trực tâm D nên là đường cao thứ ba của tam giác BFC. Đồng thời BD cũng là phân giác của góc FBC
=> tam giác FBC cân tại B => đường cao, phân giác cũng là trung tuyến. Vậy BD đi qua trung điểm S của FC.
Vậy B, D, S thẳng hàng.
a, áp dụng định lí py-ta-go ta có:
\(AB^2+AC^2=BC^2\)
=>\(BC^2\)=64+36=100(cm)
=>BC=10cm
vậy BC=10cm
b,xét 2t.giác vuông ABE và DBE có:
EB chung
AB=BD(gt)
=>t.giác ABE=t.giác DBE(cạnh huyền-cạnh góc vuông)
c,xét 2 t.giác vuông AEF và t.giác DEC có:
AE=DE(theo câu b)
\(\widehat{AEF}\)=\(\widehat{DEC}\)(vì đối đỉnh)
=>t.giác AEF=t.giác DEC(cạnh góc vuông-góc nhọn)
=>AF=DC mà BA=BD(gt) suy ra BF=BC
d,gọi O là giao điểm của BE và CF
xét t.giác BFO và t.giác BCO có:
BF=BC(theo câu c)
\(\widehat{FBO}\)=\(\widehat{CBO}\)(theo câu b)
BO cạnh chung
=> t.giác BFO=t.giác BCO(c.g.c)
=>CO=OF =>O là trung điểm của CF(1); \(\widehat{COB}\)=\(\widehat{FOB}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{COB}\)=\(\widehat{FOB}\)=90 độ =>BO\(\perp\)CF(2)
Từ (1) và (2) suy ra BE là trung trực của CF
học tốt!
a) Ta có : tam giác ABC vuông tại A
=> góc B + góc C = 90\(^o\)
Mà góc B = 53\(^o\)
=> góc C = góc A - góc B
=> góc C = 90\(^o\)- 53\(^o\)
=> góc C = 37\(^o\)
b) Xét tam giác BEA và tam giác BED có :
BD = BA (gt)
BE là cạnh chung
góc ABE = góc DBE ( BE là tia p/giác của góc B)
=> tam giác BEA = tam giác BED
c) Ta có CH vuông góc với BE
=> Tam giác BHC và tam giác BHF là tam giác vuông
Xét tam giác vuông BHF và tam giác vuông BHC có:
BH là cạnh chung
góc FBH = góc HBC ( BE là tia p/giác của góc B)
=> tam giác vuông BHF = tam giác vuông BHC ( cạnh góc vuông + góc nhọn )
=> BF = BC ( 2 cạnh tương ứng ) (*)
d) Xét tam giác BEF và tam giác BEC có :
BF = BC ( theo (*))
góc FBE = góc CBE ( BE là tia p/giác của góc B)
BE là cạnh chung
=> tam giác BEF = tam giác BEC (c . g . c )
=> góc BFD = góc BCA ( 2 góc tương ứng ) (**)
Xét tam giác BAC và tam giác BDF có :
góc BFD = góc BCA ( theo (**))
góc B là góc chung
BA = BD (gt)
=> tam giác BAC = tam giác BDF ( g . c . g )
=> góc FDB = góc CAB ( 2 góc tương ứng )
Xét tam giác BED có : góc EBD + góc BED + góc BDE = 180\(^o\)
Mà :góc FDB = góc CAB = 90\(^o\)
góc EBD = \(\frac{1}{2}\)góc B = \(\frac{53}{2}\)= 26,5\(^o\)
=> góc BED = 180\(^o\)- (90\(^o\)+ 26,5\(^o\))
=> góc BED = 180\(^o\)- 116,5\(^o\)
=> góc BED = 63,5\(^o\)
Mặt khác : Tam giác BED = tam giác BEA
=> góc AEB = BED = 63,5\(^o\)
Xét tam giác FAE có :góc FAE + góc FEA + góc AFE = 180\(^o\)
Mà : góc FAE = 90\(^o\), góc AFE = góc ACB = 37\(^o\)
=> FEA = 180\(^o\)- (90\(^o\)+ 37\(^o\))
=> FEA = 180\(^o\)- 127\(^o\)
=> FEA = 53\(^o\)
Lại có : góc FAD = góc FEA + góc AEB + góc BED
=> FAD = 53\(^o\)+ 63,5\(^o\)+ 63,5 \(^o\)
=> FAD = 180\(^o\)
=> D, F, E thẳng hàng
a, vì BD=BA nên t.giác DBA caab tại B
=>\(\widehat{BDA}\)=\(\widehat{BAD}\)mà \(\widehat{EDB}\)=\(\widehat{A}\)=90 độ nên suy ra góc \(\widehat{EAD}\)=\(\widehat{EDA}\)
=>t.giác EAD cân tại E
=>AE=DE đpcm
b,vì ED và AH cùng vuông góc vs BC nên ED//AH
=> \(\widehat{EDA}\)=\(\widehat{DAH}\)(so le) mà \(\widehat{EDA}\)=\(\widehat{EAD}\)(t.giác AED cân tại E)
=>\(\widehat{DAH}\)=\(\widehat{EAD}\)
=> AD là p/g của góc HAC
c, xét 2 t.giác vuông AKD và AHD có:
AD chung
\(\widehat{KAD}\)=\(\widehat{HAD}\)(AD là p/g của \(\widehat{HAC}\))
=>t.giác AKD=t.giác AHD(CH-GN)
=>AK=AH
#HỌC TỐT#
a: Xet ΔHAC có AB<BC
mà AB,BC lần lượt là hình chiếu của HA,HC trên AC
nên HA<HC
mà HB<HA
nên HB<HA<HC
b: HA<HC
=>góc HCA<góc HAC
c: góc HCA<góc HAC
=>90 độ-góc HCA>90 độ-góc HAC
=>góc BHC>góc BHA
1+1=3@@@@@@@@@@@