K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2015

mình làm 1 TH thôi ( B nằm giữa A;C)- tự  vẽ  hình nhé

Dễ  thấy  tam giác FBC cân tại F  ( F nằm trên đường trung trực của BC)

tuong tự  tam giác EAC cân tại E  

Mà 2 tam giác trên có chung  góc C ( góc ở đáy )

Nên 2 góc ở đỉnh bằng nhau  BFC = AEC; mà 2 góc này ở vị trí đồng vị

nên  AE // BF.

TH còn lại Bạn tự CM nhé.

 

10 tháng 4 2016

a)

xét 2 tam giác vuông ABH và ACH có:
AB=AC

B=C

suy ra tam giác ABH=ACH(CH-GN)

suy ra BH=CH=1/2BC=6:2=3(cm)

AH^2=AB^2-BH^2=5^2-3^2=25-9=16

AH= 4(cm)

b)

theo câu a, ta có tam giác ABH=ACH(CH-GN)

suy ra BH=CH suy ra AH là 1 đường trung tuyến của tam giác ABC

G là trọng tâm tam giác nên G sẽ là giao của 3 đường trung tuyến

suy ra A,G,H thẳng hàng

A B C E N M D O 1 2 1 2

Bài làm

a) Ta có tia phân giác của góc \(\widehat{ABC}\)

=> \(\widehat{B}_1=\widehat{B_2}\)

Ta có tia phân giác của góc \(\widehat{ACB}\)

=> \(\widehat{C}_1=\widehat{C_2}\)

Mà \(\widehat{ABC}=\widehat{ACB}\)( Tam giác ABC cân tại A )

=>\(\widehat{B}_1=\widehat{B_2}=\widehat{C_1}=\widehat{C_2}\)

Xét tam giác ACN và tam giác  ABM có:

\(\widehat{B}_1=\widehat{C_1}\)( Chứng minh trên )

AB = AC ( tam giác ABC cân tại A )

\(\widehat{BAC}\)là góc chung

=> Tam giác ACN = tam giác  ABM ( g.c.g )                     ( đpcm )

b) ~ Mik nghĩ đề bài bn sai ở chỗ câu b. pk là A là trung điểm của DE mới phải ~

Vì \(\widehat{B}_1=\widehat{C_1}\)( Chứng minh trên )

Ta có: \(\widehat{B}_1\)đối diện với cạnh AD                                         ( 1 )   

       Vì \(\widehat{C_1}\)đối diện với cạnh EA                                      ( 2 )   

Từ  ( 1 ) ( 2 ) => AD = AE

=> A là trung điểm của DE                                         ( đpcm )

# Hok_tốt #

5 tháng 4 2020

a)Xét ΔABM vuông và ΔACM vuông có:

AM chung

AB=AC

=> ΔABM = ΔACM

=> BAM = CAM ( 2 góc t.ư)

=> AM là p/g của góc BAC

6 tháng 4 2020

cau con lai dau ban, hinh nua

24 tháng 4 2017

mik moi lop 5 hjhj

24 tháng 4 2017

minh cung the

15 tháng 3 2017

Hình vẽ:

I K C A B

Giải:

a/ Xét \(\Delta ACI\)\(\Delta BCI\) có:

AI: chung

\(\widehat{ACI}=\widehat{BCI}\left(gt\right)\)

AC = BC (gt)

=> \(\Delta ACI=\Delta BCI\left(c-g-c\right)\left(đpcm\right)\)

=> AI = BI (c t/ứng)(đpcm)

b/ \(\Delta ACI=\Delta BCI\left(ýa\right)\)

\(\Rightarrow\widehat{AIC}=\widehat{BIC}\) (g t/ứng)

\(\widehat{AIC}+\widehat{BIC}=180^o\) (kề bù)

=> \(\widehat{AIC}=\widehat{BIC}=90^o\)

=> CI _l_ AB

Vì AI = BI mà AB = 6

=> AI = BI = 3

Áp dụng định lý Py-ta-go vào \(\Delta ACI\) vuông tại I có: \(CI^2+AI^2=AB^2\)

hay \(CI^2+3^2=5^2\)

\(\Rightarrow CI^2=5^2-3^2=16\)

\(\Rightarrow CI=4\left(cm\right)\)

c/ Xét 2 \(\Delta vuông\): \(\Delta ACK\)\(\Delta BCK\) có:

AK: chung

AC = BC (gt)

=> \(\Delta ACK=\Delta BCK\left(ch-cgv\right)\)

\(\Rightarrow\widehat{ACK}=\widehat{BCK}\) (g t/ứng)

=> CK là tia p/g của góc ACB (1)

Lại có: CI là tia p/g của góc ACB (gt)

=> CK trùng CI

=> 3 điểm C, I, K thẳng hàng (đpcm)