Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.
Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.
\(\overline{2ab1}=13\times\overline{c2d}\)
\(0\le ab\le99\)\(\Rightarrow\overline{c2d}\le230\Rightarrow\orbr{\begin{cases}c=1\left(l\right)\\c=2\left(tm\right)\end{cases}}\)
\(\Rightarrow\overline{2ab1}=13\cdot\overline{22d}\)
d | \(13\cdot\overline{22d}\) | \(\overline{2ab1}\Rightarrow\overline{ab}\) |
1 | 2873 | L |
2 | 2886 | L |
3 | 2899 | L |
4 | 2912 | L |
5 | 2925 | L |
6 | 2938 | L |
7 | 2951 | 2951 nên ab=95 |
8 | 2964 | L |
9 | 2977 | L |
Vậy số a=9 b=5 c=2 d=7
B = { 1 ; 3 ; 5 ; 7 ; 9 }
C = { 1 ; 3 ; 5 ; 7 ; 9; 11;...........}
D = không có số x nào
F = { 12 ; 23 ; 34 ; 45 ; 56 ; 67; 78 ; 89 }
xin lỗi nha. hình như mk đọc đề ko kỉ, chắc bài của mk sai r` đó