Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có \(A=\frac{x-2}{x+2}\)
\(A=\frac{x+2-4}{x+2}\)
\(A=1-\frac{4}{x+2}\)
Để A > 1
<=> \(1-\frac{4}{x+2}>1\)
<=> \(\frac{4}{x+2}>0\)
<=> \(4>x+2\)
<=> \(2>x\)
<=> \(x< 2\)
Bạn coi lại đáp án câu a/ nha bạn. Mình ra là \(x< 2\).
b/ Để \(A\inℤ\)
<=> \(1-\frac{4}{x+2}\inℤ\)
Mà \(1\inℤ\)
<=> \(-\frac{4}{x+2}\inℤ\)
<=> \(\left(-4\right)⋮\left(x+2\right)\)
<=> \(x+2\in\)Ư (4)
Đến đây bạn giải quyết phần còn lại nhen. Mình lười lắm.
b) Để A có giá trị là số nguyên
Thì (x—2) chia hết cho (x+2)
==> (x+2–4) chia hết cho (x+2)
Vì (x+2) chia hết cho (x+2)
Nên (—4) chia hết cho (x+2)
==> x+2 € Ư(4)
==> x+2 €{1;—1;2;—2;4;—4}
TH1: x+2=1
x=1–2
x=—1
TH2: x+2=—1
x=—1–2
x=—3
TH3: x+2=2
x=2–2
x=0
TH4: x+2=—2
x=—2–2
Xa=—4
TH5: x+2=4
x=4–2
x=2
TH6: x+2=—4
x=—4–2
x=—6
Vậy x€{—1;—3;0;—4;2;—6}
\(P=x^4+2x^2+1-x^2=\left(x^2+1\right)^2-x^2\)
\(P=\left(x^2-x+1\right)\left(x^2+x+1\right)\)
\(\Rightarrow\) P luôn có ít nhất 2 ước số là \(x^2-x+1\) và \(x^2+x+1\)
Do \(x^2+x+1\ge x^2-x+1\) nên P là SNT khi và chỉ khi \(x^2-x+1=1\) đồng thời \(x^2+x+1\) là SNT
\(x^2-x+1=1\Leftrightarrow x^2-x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
- Với \(x=0\Rightarrow x^2+x+1=1\) ko phải SNT (loại)
- Với \(x=1\Rightarrow x^2+x+1=3\) là SNT (t/m)
Vậy \(x=1\)
a) Tìm số tự nhiên x để A=x14+x13+1 là số nguyên tố
b) Chứng minh x4-10x2+27 không là số chính phương
a)
Xét x=0 => A = 1 không là số nguyên tố
Xét x=1 => A= 3 là số nguyên tố (chọn)
Xét x>1
Có A = x14+ x13 + 1 = x14 - x2 + x13 - x + x2 + x + 1
A = x2(x12-1) + x(x12-1) + x2+x+1
A = (x2+x)(x3*4-1) + x2 + x + 1
Có x3*4 chia hết cho x3
=> x3*4-1 chia hết cho x3 - 1 = (x-1)(x2+x+1)
=> x3*4-1 chia hết cho x2+x+1
=>A chia hết cho x2+x+1 mà x2+x+1 >0 (do x>1)
=> A là hợp số với mọi x > 1 (do A chia hết cho x2+x+1)