K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DT
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
DT
0
NT
1
17 tháng 3 2018
Tìm giá trị nhỏ nhất của:P=/x-2016/+/x-2017/.
Áp dụng BĐT /a+b/. ≤/a/+/b/. ⇒ P=/x-2016/+/x-2017/= /x-2016/+/2017-x/ lớn hơn hoặc bằng /x-2016+2017-x/=1.
Vậy GTNN của P là 1 <=> 0. ≤(x-2016)(2017-x) <=> 2016. ≤x. ≤2017.
CN
3
15 tháng 4 2019
Ta có |x+2018| >= x+2018
| x-2018|>=2018-x
=>|x+2018|+|x-2018|>= x+2018+2018-x = 4036
Dấu = xảy <=> x+2018 >=0=> x>=-2018
x-2018<=0 x<=2018
Vậy GTNN A=4036 <=> -2018=<x<=2018
Thưa bạn o có GTLN
T i ck mja
12 tháng 2 2018
a/A=|x-2017|+|x-2018|
=|x-2017|+|2018-x|
=>Alớn hơn hoặc bằng |x-2017+2018-x|=1
Dấu = xảy ra khi:(x-2017+2018-x) lớn hơn hoặc bằng 0
Vậy GTNN của A=1khi 2017 nhỏ hơn hoặc bằng x nhỏ hơn hoặc bằng 2018
\(B=\sqrt{x+2017}+2018\)
a) Đề biểu thức trên có nghĩa thì:
\(x+2017\ge0\Rightarrow x\ge-2017\)
b) Với mọi \(x\ge-2017\) ta có:
\(\sqrt{x+2017}\ge0\)
\(\Rightarrow\sqrt{x+2017}+2018\ge2018\)
Dấu "=" xảy ra khi:
\(\sqrt{x+2017}=0\Rightarrow x=-2017\)
\(\Rightarrow MIN_B=2018\) khi \(x=-2017\)