Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B= \(\frac{1}{4}\)+\(\frac{1}{5}\)+.....+ \(\frac{1}{19}\)
B= ( \(\frac{1}{4}\)+ \(\frac{1}{5}\)+\(\frac{1}{6}\)+\(\frac{1}{7}\)) +....+( \(\frac{1}{16}\)+\(\frac{1}{17}\)+\(\frac{1}{18}\)+\(\frac{1}{19}\)) ( 4 số 1 nhóm )
ta có : \(\frac{1}{4}\)+\(\frac{1}{5}\)+\(\frac{1}{6}\)+\(\frac{1}{7}\)> \(\frac{1}{8}\)x 4= \(\frac{1}{2}\)
\(\frac{1}{8}\)+\(\frac{1}{9}\)+\(\frac{1}{10}\)+\(\frac{1}{11}\)> \(\frac{1}{12}\)x4=\(\frac{1}{3}\)
\(\frac{1}{12}\)+\(\frac{1}{13}\)+\(\frac{1}{14}\)+\(\frac{1}{15}\)> \(\frac{1}{16}\)x 4 = \(\frac{1}{4}\)
\(\frac{1}{16}\)+ \(\frac{1}{17}\)+\(\frac{1}{18}\)+\(\frac{1}{19}\)> \(\frac{1}{20}\)x 4 = \(\frac{1}{5}\)
\(\Rightarrow\)B > \(\frac{1}{2}\)+\(\frac{1}{3}\)+\(\frac{1}{4}\)+\(\frac{1}{5}\)=\(\frac{77}{60}\)>1
\(\Rightarrow\)B > 1
Bạn xem lời giải của mình nhé:
Giải:
Ta tách B làm 2 vế, mỗi vế có 8 số hạng:
+) \(A=\frac{1}{4}+\frac{1}{5}+...+\frac{1}{11}\)
+) \(C=\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}\)
Xét A:
1/4 > 1/12
1/5 > 1/12
...
1/11 > 1/12
=> \(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{11}< \frac{1}{12}+\frac{1}{12}+...+\frac{1}{12}\) (8 số 1/12) => \(A< \frac{8}{12}\Rightarrow A< \frac{3}{4}\)(1)
Xét C:
1/12 > 1/20
1/13 > 1/20
...
1/19 > 1/20
=> \(\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\) (8 số hạng) => \(C>\frac{8}{20}\Rightarrow C>\frac{2}{5}\)(2)
Từ (1) và (2) => A + C > \(\frac{3}{4}+\frac{2}{5}\Rightarrow B>1\frac{3}{20}>1\)
Vậy B>1 (đpcm)
Chúc bạn học tốt!
\(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}\)
\(B=\frac{1}{4}+\left(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}\right)+\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{19}\right)\)
Vì \(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}>\frac{1}{9}+\frac{1}{9}+...+\frac{1}{9}\) nên \(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}>\frac{5}{9}>\frac{1}{2}\)
Vì \(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{19}>\frac{1}{19}+\frac{1}{19}+...+\frac{1}{19}\) nên \(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{19}>\frac{10}{19}>\frac{1}{2}\)
\(=>\) \(B>\frac{1}{4}+\frac{1}{2}+\frac{1}{2}>1\)
Vậy \(B< 1\)
\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}=\left(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{11}\right)+\left(\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}\right)>\left(\frac{1}{11}+\frac{1}{11}+...+\frac{1}{11}\right)+\left(\frac{1}{19}+\frac{1}{19}+...+\frac{1}{19}\right)=\frac{8}{11}+\frac{8}{19}=\frac{240}{209}>\frac{209}{209}=1\Rightarrow B>1\)
Ta có 1/4 > 1/19
1/5 > 1/19
.........
1/19 = 1/19
=>1/4 + 1/5 +......+1/19 > 1/19 + 1/19.....+1/19=19/19=1
=>1/4+1/5+. . . . . . .+1/19>1
Ta có 1/4 > 1/19
1/5 > 1/19
.........
1/19 = 1/19
=>1/4 + 1/5 +......+1/19 > 1/19 + 1/19.....+1/19=19/19=1
=>1/4+1/5+. . . . . . .+1/19>1
TK MK NHA . CHÚC BẠN HỌC GIỎI
ĐÚNG 100% NHA
Ta có:
1/4>1/16 ; 1/5>1/16 ;1/6>1/16 ; ......; 1/19<1/16 (lấy phân số 1/16 vì từ 1/4 đến 1/19 có 16 số nên lấy 1/16 để được 1)
suy ra :
(1/4+1/5+1/6+...+1/15) >(1/16+1/16+1/16+...+1/16) =1 1/4+1/5+1/6+...1/15 >1 (1) (1/16+1/17+1/18+1/19) < (1/16+1/16+1/16+...+1/16) =1 1/16+1/17+1/18+1/19 <1 (2)
từ 1 và 2 suy ra b>1 là 11 lần (vì có 11 số) và b<1 là 4 lần (vì có 4 số) Vậy b>1
b có số số hạng là :
(19-4):1+1=16 ( số hạng)
16 chia hết cho 4 nên ta nhóm 4 số vào 1 nhóm
ta có B=(1/4+1/5+1/6+1/7)+(1/8+1/9+1/10+1/11)+(1/12+1/13+1/14+1/15)+(1/16+1/17+1/18+1/19)>(1/8+1/8+1/8+1/8)+(1/12+1/12+1/12+1/12)+(1/16+1/16+1/16+1/16)+(1/20+1/20+1/20+1/20)= 1/8.4+1/12.4+1/16.4+1/20.4=1/2+1/3+1/4+1/5=5/6+1/6=1
vậy b>1
B = 1/4 + 1/5 + ...+1/19 > 1/4 + ( 1/20+1/20+..+1/20) = 1/4 + 3/4 = 1
=> B > 1
( chú ý: có 15 phân số 1/20)
Vì 1/4 >1/20 ; 1/5 > 1/20 ;...; 1/19 > 1/20
=>1/4 + 1/5 + 1/6 +...+ 1/19 > 1/20+1/20+1/20+...+1/20=10/20=1
=> đpcm