Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a = a1m ; c = c1m ( a1,c1,m \(\in\) N* ; (a1,c1)=1 )
\(\Rightarrow\) a1mb = c1md
\(\Rightarrow\) a1b = c1d ( Do m \(\in\) N* )
\(\Rightarrow\) a1b \(⋮\) c1 mà (a1,c1)=1 \(\Rightarrow\) b\(⋮\) c1
CMTT: d \(⋮\) c1
Đặt b = c1n ; d = a1n ( n \(\in\) N* )
Có a5+b5+c5+d5 = a15m5+c15n5+c15m5+a15n5
= ( a15 +c15 )( n5 + m5 )
Mà\(\left\{{}\begin{matrix}a_1^5+c_1^5\ge2\\m^5+n^n\ge2\end{matrix}\right.\) ( Vì a1,c1,m,n \(\in\) N* )
\(\Rightarrow\)a5+b5+c5+d5 là tích 2 số lớn hơn 1
\(\Rightarrow\) a5+b5+c5+d5 là hợp số ( đpcm )
từ cái điều kiện đầu=>a;b;c;d<(=)2
=>a4(2-a)+b4(2-b)+c4(2-c)+d4(2-d)>(=)0
<=>2a2+2b4+2c4+2d4>(=)a5+b5+c5+d5
<=>32>(=)a5+b5+c5+d5(đpcm)
dấu bằng khi 1 trong 4 số =2
Bài 1:
Sử dụng biến đổi tương đương. Ta có:
\(a^5+b^5\geq a^3b^2+a^2b^3\)
\(\Leftrightarrow a^5+b^5-a^3b^2-a^2b^3\geq 0\)
\(\Leftrightarrow a^3(a^2-b^2)-b^3(a^2-b^2)\geq 0\)
\(\Leftrightarrow (a^3-b^3)(a^2-b^2)\geq 0\)
\(\Leftrightarrow (a-b)^2(a^2+ab+b^2)(a+b)\geq 0\) (luôn đúng với mọi $a,b$ dương)
Ta có đpcm.
Dấu bằng xảy ra khi \((a-b)^2=0\Leftrightarrow a=b\)
Bài 2: Sử dụng kết quả bài 1:
\(a^5+b^5\geq a^3b^2+a^2b^3\Rightarrow a^5+b^5+ab\geq a^3b^2+a^2b^3+ab\)
\(\Rightarrow \frac{ab}{a^5+b^5+ab}\leq \frac{ab}{a^3b^2+a^2b^3+ab}=\frac{1}{a^2b+ab^2+1}=\frac{1}{a^2b+ab^2+abc}=\frac{1}{ab(a+b+c)}\)
Hoàn toàn tt:
\(\frac{bc}{b^5+c^5+bc}\leq \frac{1}{bc(a+b+c)}; \frac{ca}{c^5+a^5+ac}\leq \frac{1}{ac(a+b+c)}\)
Do đó:
\(P\leq \frac{1}{ab(a+b+c)}+\frac{1}{bc(a+b+c)}+\frac{1}{ac(a+b+c)}\). Thay \(1=abc\)
\(\Leftrightarrow P\leq \frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=1\) (đpcm)
a) \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
(Luôn đúng)
Vậy ta có đpcm.
Đẳng thức khi \(a=b=c\)
b) \(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2b+1+a^2-2a+1\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-1\right)^2+\left(a-1\right)^2\ge0\)
(Luôn đúng)
Vậy ta có đpcm
Đẳng thức khi \(a=b=1\)
Các bài tiếp theo tương tự :v
g) \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\ge6\sqrt[6]{a^2.a^2b^2.b^2.b^2c^2.c^2.c^2a^2}=6abc\)
i) \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=\dfrac{2}{\sqrt{ab}}\)
Tương tự: \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}};\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{2}{\sqrt{ca}}\)
Cộng vế theo vế rồi rút gọn cho 2, ta được đpcm
j) Tương tự bài i), áp dụng Cauchy, cộng vế theo vế rồi rút gọn được đpcm