Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đầu bài có \(x_1\)là nghiệm của phương trình \(ax^2+bx+c=0\)nên có
\(ax_1^2+bx_1+c=0\)
chia hai vế cho \(x_1^2\ne0\)ta được \(a+b\frac{1}{x_1}+c\frac{1}{x_1^2}=0\)
ta có \(c.\left(\frac{1}{x_1}\right)^2+b\left(\frac{1}{x_1}\right)+a=0\)
suy ra \(\frac{1}{x_1}\)là nghiệm của của phương trình \(cx^2+bx+a=0\)
Ta chọn \(x_2=\frac{1}{x_1}>0.\)vậy \(x_1x_2=1\)
áp dụng bất đẳng thức Co-si cho 2 hai số dương ta có :
\(x_1+x_2+x_1x_2=x_1+\frac{1}{x_1}+1\ge2\sqrt{x_1.\frac{1}{x_1}}+1=3\left(dpcm\right)\)
Áp dụng BĐT Holder ta có:
\(VT=\left(1+2009a_1\right)\left(1+2009a_2\right)....\left(1+2009a_n\right)\)
\(\ge\left(1+\sqrt[n]{2009^na_1a_2a_3...a_n}\right)^n\)
\(=\left(1+2009\right)^n\)\(=2010^n=VP\)
Dấu "=" xảy ra khi \(a_1=a_2=...=a_n=1>0\)
Vậy...
Băng : học vừa đi em nay mai dùng nhiều đó
Bất đẳng thức Holder - Bất đẳng thức và cực trị - Diễn đàn Toán học bắt đầu từ cái này nhé :) thực ra nó cũng giống Bunhia thôi mà
Ta có: \(\hept{\begin{cases}x^2+a_1x+b_1=0\left(1\right)\\x^2+a_2x+b_2=0\left(2\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\Delta_1=a_1^2-4b_1\\\Delta_2=a_2^2-4b_2\end{cases}}\)
\(\Rightarrow\Delta_1+\Delta_2=a_1^2+a_2^2-4\left(b_1+b_2\right)\ge2a_1a_2-4\left(b_1+b_2\right)\ge0\)
\(\Rightarrow a_1a_2-2\left(b_1+b_2\right)\ge0\)
Vì \(\Delta_1+\Delta_2\ge0\)
nên có ít nhất 1 trong 2 cái \(\Delta\) không âm .
\(\Rightarrow\)Có ít nhất 1 trong hai phương trình có nghiệm .
Ta có denta 1 + denta 2 = a12 -4b1 + a22 - 4b2 >= 2a1 a2 - 4(b1 + 4b2) >= 4(b1 + 4b2) - 4(b1 + 4b2) = 0
Vậy có ít nhất 1 trong 2 denta >= 0 nên có ít nhất 1 phương trình có nghiệm
2. \(A=\frac{x^2-2x+2011}{x^2}=1-\frac{2}{x}+\frac{2011}{x^2}=\left(\frac{2011}{x^2}-\frac{2}{x}+\frac{1}{2011}\right)+\frac{2000}{2011}=\left(\frac{\sqrt{2011}}{x}-\frac{1}{\sqrt{2011}}\right)^2+\frac{2000}{2011}\)
\(\Leftrightarrow A\ge\frac{2000}{2011}\Rightarrow MinA=\frac{2000}{2011}\Leftrightarrow\frac{\sqrt{2011}}{x}=\frac{1}{\sqrt{2011}}\Leftrightarrow x=2011\)
Điều kiện a,b,c không cho làm sao suy được mấy cái đó mà bảo chứng minh b.
Ta có:
\(\left(a_n-\frac{1}{2010}\right)^2\ge0\Rightarrow a_n^2-\frac{2}{2010}a_n+\frac{1}{2010^2}\ge0\)
\(\Rightarrow a_n^2\ge\frac{2}{2010}a_n-\frac{1}{2010^2}\)
\(\Rightarrow a_1^2+a_2^2+...+a_{2010}^2\ge\frac{2}{2010}\left(a_1+a_2+...+a_{2010}\right)-2010.\frac{1}{2010^2}\)
\(=\frac{2}{2010}-\frac{1}{2010}=\frac{1}{2010}\)
Dấu "=" xảy ra khi \(a_1=a_2=...=a_n=\frac{1}{2010}\)
Từ giả thiết ta suy ra \(\frac{1}{a_1}-1=\frac{a_2+\cdots+a_{2011}}{a_1}\ge\frac{2010\sqrt[2010]{a_2\cdots a_{2011}}}{a_1}=\frac{2010\left(\sqrt[2010]{\frac{a_1\cdots a_{2011}}{a_1}}\right)}{a_1}.\)
Tương tự, ta thiết lập 2010 bất đẳng thức còn lại cho \(\frac{1}{a_2}-1,\ldots,\frac{1}{a_{2011}}-1\) rồi nhân vào ta sẽ thu được
\(\left(\frac{1}{a_1}-1\right)\left(\frac{1}{a_2}-1\right)\cdots\left(\frac{1}{a_{2012}}-1\right)\ge\frac{2010^{2011}\left(\sqrt[2010]{\frac{a_1\cdots a_{2011}}{a_1}}\right)\cdots\left(\sqrt[2010]{\frac{a_1\cdots a_{2011}}{a_{2011}}}\right)}{a_1\cdots a_{2011}}=2010^{2011}\)