K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(A=\frac{10^{2016}-1}{10^{2017}-11}\)

\(\Leftrightarrow10.A=\frac{10.\left(10^{2016}-1\right)}{10^{2017}-11}=\frac{10^{2017}-10}{10^{2017}-11}\)

\(=\frac{10^{2017}-11+1}{10^{2017}-11}=1+\frac{1}{10^{2017}-11}\)

Lại có : \(B=\frac{10^{2016}+1}{10^{2017}+9}\)

\(\Leftrightarrow10.B=\frac{10\left(10^{2016}+1\right)}{10^{2017}+9}=\frac{10^{2017}+10}{10^{2017}+9}\)

\(=\frac{10^{2017}+9+1}{10^{2017}+9}=1+\frac{1}{10^{2017}+9}\)

Do : \(10^{2017}-11< 10^{2017}+9\) \(\Rightarrow\frac{1}{10^{2017}-11}>\frac{1}{10^{2017}+9}\)

\(\Rightarrow1+\frac{1}{10^{2017}-11}>1+\frac{1}{10^{2017}+9}\)

hay \(A>B\)

Vậy : \(A>B\)

14 tháng 1 2016

a)7/23<11/28

b)2014/2015+2015/2016>2014+2015/2015+2016

c) A= gì vậy

6 tháng 6 2019

\(\frac{1+\sqrt{3}}{\sqrt{3}-1}=\frac{\left(1+\sqrt{3}\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}=2+\sqrt{3}\)

\(\frac{2}{\sqrt{2}-1}=\frac{2\sqrt{2}+2}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=2\sqrt{2}+2=\sqrt{8}+2\)

\(\Rightarrow\frac{2}{\sqrt{2}-1}>\frac{1+\sqrt{3}}{\sqrt{3}-1}\)

27 tháng 6 2017

\(\sqrt{12}-\sqrt{11}\)   bé hơn \(\sqrt{11}-\sqrt{10}\) 

8 tháng 8 2017

Với n > 0 Ta có:

\(\frac{1}{\sqrt{n+1}-\sqrt{n}}=\frac{\sqrt{n+1}+\sqrt{n}}{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}=\frac{\sqrt{n+1}+\sqrt{n}}{n+1-n}\)

\(=\sqrt{n+1}+\sqrt{n}\)

\(\Rightarrow\frac{1}{\sqrt{16}-\sqrt{15}}-\frac{1}{\sqrt{15}-\sqrt{14}}+...+\frac{1}{\sqrt{10}-\sqrt{9}}\)

\(=\sqrt{16}+\sqrt{15}-\sqrt{15}-\sqrt{14}+...+\sqrt{10}+\sqrt{9}\)

\(\sqrt{16}+\sqrt{9}=3+4=7\)

28 tháng 4 2017

Từ \(\frac{a}{1+a}+\frac{2b}{1+b}+\frac{3c}{1+c}+\frac{5d}{1+d}\le1\)

\(\Rightarrow1-\frac{a}{1+a}+2-\frac{2b}{1+b}+3-\frac{3c}{1+c}+5-\frac{5d}{1+d}\ge10\)

\(\Rightarrow\frac{1}{1+a}+\frac{2}{1+b}+\frac{3}{1+c}+\frac{5}{1+d}\ge10\)

Áp dụng BĐT AM-GM ta có: 

\(\frac{1}{a+1}\ge\)\(\frac{2b}{1+b}+\frac{3c}{1+c}+\frac{5d}{1+d}\ge10\sqrt[10]{\frac{b^2c^3d^5}{\left(1+b\right)^2\left(1+c\right)^3\left(1+d\right)^5}}\)

Và \(\frac{1}{1+b}\ge\)\(\frac{a}{1+a}+\frac{b}{b+1}+\frac{3c}{c+1}+\frac{5d}{d+1}\)

\(\ge10\sqrt[10]{\frac{abc^3d^5}{\left(1+a\right)\left(1+b\right)\left(1+c\right)^3\left(1+d\right)^5}}\)

Và \(\frac{1}{1+c}\ge\frac{a}{1+a}+\frac{2b}{b+1}+\frac{2c}{c+1}+\frac{5d}{d+1}\)

\(\ge10\sqrt[10]{\frac{ab^2c^2d^5}{\left(1+a\right)\left(1+b\right)^2\left(1+c\right)^2\left(1+d\right)^5}}\)

Và \(\frac{1}{1+d}\ge\frac{a}{a+1}+\frac{2b}{b+1}+\frac{3c}{c+1}+\frac{4d}{d+1}\)

\(\ge10\sqrt[10]{\frac{ab^2c^3d^4}{\left(1+a\right)\left(1+b\right)^2\left(1+c\right)^3\left(1+d\right)^4}}\)

Nhân theo vế 4 BĐT có: \(\frac{1}{\left(1+a\right)\left(1+b\right)^2\left(1+c\right)^3\left(1+d\right)^5}\)

\(\ge10^{1+2+3+5}\sqrt[10]{\frac{a^{2+3+5}b^{2+2+6+10}c^{3+6+6+15}d^{5+10+15+20}}{\left(1+a\right)^{10}\left(1+b\right)^{20}\left(1+c\right)^{30}\left(1+d\right)^{50}}}\)

Tương đương với \(ab^2c^3d^5\le\frac{1}{10^{11}}\) (ĐPCM)

11 tháng 5 2017

kho ko