K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2018

\(A=a-\sqrt{a}\)

vì: a > 1 => \(a>\sqrt{a}\)

=> \(A=a-\sqrt{a}>0\)

=> \(A=\left|A\right|\)

Câu 1: 

a: \(\Leftrightarrow2x^2-x-5< x^2+x-6\)

\(\Leftrightarrow x^2-2x+1< 0\)

hay \(x\in\varnothing\)

b: \(\Leftrightarrow x^2-5x-x+4>0\)

\(\Leftrightarrow x^2-6x+4>0\)

\(\Leftrightarrow\left(x-3\right)^2>5\)

hay \(\left[{}\begin{matrix}x>\sqrt{5}+3\\x< -\sqrt{5}+3\end{matrix}\right.\)

11 tháng 10 2019

A= \(a^{2017}\left(a^2-8a+11\right)+b^{2017}\left(b^2-8b+11\right)=\)\(a^{2017}\left(a^2-8a+16-5\right)+b^{2017}\left(b^2-8b+16-5\right)=\)\(a^{2017}\left(\left(a-4\right)^2-\sqrt{5^2}\right)+b^{2017}\left(\left(b-4\right)^2-\sqrt{5^2}\right)\)=\(a^{2017}\left(a-4-\sqrt{5}\right)\left(a-4+\sqrt{5}\right)+b^{2017}\left(b-4-\sqrt{5}\right)\left(b-4+\sqrt{5}\right)\)= 0+0= 0

Bài 1:

a: Để hàm số đồng biến thì a>0

Để hàm số nghịch biến thì a<0

b: Để hai đường vuôg góc thì a*1=-1

=>a=-1

Bài 2:

PTHĐGĐ là:

1/4x^2=2x+m-4

=>x^2=8x+4m-16

=>x^2-8x-4m+16=0

Δ=(-8)^2-4(-4m+16)

=64+16m-64=16m

Để (P) cắt (d) tại hai điểm phân biệt thì 16m>0

=>m>0

19 tháng 1 2019

a ) ĐK : \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)\(P=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^{^2}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\dfrac{x-1-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+3}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{x-2\sqrt{x}+1}{x+4\sqrt{x}+3}\)

29 tháng 12 2017

a. ĐKXĐ : x>1.

b. \(A=\left(\dfrac{4}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{1}{\sqrt{x}-1}=\left[\dfrac{4}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right].\left(\sqrt{x}-1\right)=\dfrac{4+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-1\right)=\dfrac{4+x}{\sqrt{x}}\)

c. Thay \(x=4-2\sqrt{3}\) vào A, ta có:

\(A=\dfrac{4+4-2\sqrt{3}}{\sqrt{4-2\sqrt{3}}}=\dfrac{8-2\sqrt{3}}{\sqrt{\left(\sqrt{3}-1\right)^2}}=\dfrac{8-2\sqrt{3}}{\sqrt{3}-1}=\dfrac{\left(8-2\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}=\dfrac{8\sqrt{3}+8-6-2\sqrt{3}}{2}=\dfrac{2+6\sqrt{3}}{2}=\dfrac{2\left(1+3\sqrt{3}\right)}{2}=1+3\sqrt{3}\)

Vậy giá trị của A tại \(x=4-2\sqrt{3}\)\(1+3\sqrt{3}\).