K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{\left(a+c\right)\left(b+c\right)}+\sqrt{\left(a-c\right)\left(b-c\right)}\right)^2\)

\(\le\left(a+c+a-c\right)\left(b+c+b-c\right)\)

\(=2a\cdot2b=4ab=VP^2\)

\(\Rightarrow VT\le VP\) *ĐPCM*

7 tháng 8 2016

\(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)

\(\Leftrightarrow\left(\sqrt{c\left(a-c\right)}\right)^2+\left(\sqrt{c\left(b-c\right)}\right)\le\left(\sqrt{ab}\right)^2\) 

\(\Leftrightarrow c\left(a-c\right)+c\left(b-c\right)\le ab\) 

Thấy: \(c\left(a-c+b-c\right)\)  

\(\Leftrightarrow ac-\left(c^2-cb+c^2\right)\)

\(c< b\Rightarrow ac< ab\) 

Do đó: \(ac-\left(c^2-cb+c^2\right)< ab\) 

Vậy: \(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)

13 tháng 6 2017

 ta cần cm \(\left(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right)^2\le ab\)

mà theo bunhia \(\left(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right)^2\le\left(c+b-c\right)\left(c+a-c\right)=ab\)

8 tháng 6 2017

lú rùi vậy cũng sai :(

\(BDT\Leftrightarrow\sqrt{\dfrac{c}{b}.\dfrac{a-c}{a}}+\sqrt{\dfrac{c}{a}.\dfrac{b-c}{b}}\le1\)

Áp dụng BĐT AM-GM ta có:

\(VT\le\dfrac{\dfrac{c}{b}+\dfrac{a-c}{a}}{2}+\dfrac{\dfrac{c}{a}+\dfrac{b-c}{b}}{2}=1\)

18 tháng 11 2017

a) Gõ link này nha: http://olm.vn/hoi-dap/question/1078496.html

18 tháng 6 2015

Áp dụng bấ đẳng thức Bu-nhia-cốp-xki:

\(\left(\sqrt{c}.\sqrt{a-c}+\sqrt{b-c}.\sqrt{c}\right)^2\le\left(c+b-c\right)\left(a-c+c\right)=ab\)

\(\Rightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)

\(\Rightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}-\sqrt{ab}\le0\)

 

5 tháng 11 2017

Sửa đề \(a;b>c>0\)

Giả sử \(\sqrt{ab}\ge\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\)

\(\Leftrightarrow ab\ge c\left(a-c\right)+c\left(b-c\right)+2c\sqrt{\left(a-c\right)\left(b-c\right)}\)

\(\Leftrightarrow ab-ac+c^2-bc+c^2-2c\sqrt{\left(a-c\right)\left(b-c\right)}\ge0\)

\(\Leftrightarrow\left(a-c\right)\left(b-c\right)-2c\sqrt{\left(a-c\right)\left(b-c\right)}+c^2\ge0\)

\(\Leftrightarrow\left(\sqrt{\left(a-c\right)\left(b-c\right)}\right)^2-2c\sqrt{\left(a-c\right)\left(b-c\right)}+c^2\ge0\)

\(\Leftrightarrow\left(\sqrt{\left(a-c\right)\left(b-c\right)}-c\right)^2\ge0\)đúng với \(\forall a;b>c>0\)

2 tháng 11 2017

Đặt \(\sqrt{c.\left(a-c\right)}+\sqrt{c.\left(b-c\right)}\)  = A

Ta có A^2 = \(\left(\sqrt{\left(a-c\right).c}+\sqrt{c.\left(b-c\right)}\right)^2\)

Áp dụng bđt bunhiacopxki ta có A^2 <= \(\left(\sqrt{a-c}^2+\sqrt{c^2}\right).\left(\sqrt{c^2}+\sqrt{b-c^2}\right)\)

                                                       = (a-c+c).(c+b-c) = ab

<=> A<= \(\sqrt{ab}\)=> ĐPCM

Dấu"=" <=> a-c = c và c = b-c

<=> a=b=2c>0

2 tháng 11 2017

Ta có bất đẳng thức bunhicopxki

\(\sqrt{ax}+\sqrt{by}\le\sqrt{\left(a+x\right)\left(b+y\right)}\)

Áp dụng vào ta có:

\(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{\left(a-c+c\right)\left(b-c+c\right)}\le\sqrt{ab}\)

Dấu bằng xảy ra khi a-c = b-c