Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{\left(a+c\right)\left(b+c\right)}+\sqrt{\left(a-c\right)\left(b-c\right)}\right)^2\)
\(\le\left(a+c+a-c\right)\left(b+c+b-c\right)\)
\(=2a\cdot2b=4ab=VP^2\)
\(\Rightarrow VT\le VP\) *ĐPCM*
\(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
\(\Leftrightarrow\left(\sqrt{c\left(a-c\right)}\right)^2+\left(\sqrt{c\left(b-c\right)}\right)\le\left(\sqrt{ab}\right)^2\)
\(\Leftrightarrow c\left(a-c\right)+c\left(b-c\right)\le ab\)
Thấy: \(c\left(a-c+b-c\right)\)
\(\Leftrightarrow ac-\left(c^2-cb+c^2\right)\)
\(c< b\Rightarrow ac< ab\)
Do đó: \(ac-\left(c^2-cb+c^2\right)< ab\)
Vậy: \(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
ta cần cm \(\left(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right)^2\le ab\)
mà theo bunhia \(\left(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right)^2\le\left(c+b-c\right)\left(c+a-c\right)=ab\)
lú rùi vậy cũng sai :(
\(BDT\Leftrightarrow\sqrt{\dfrac{c}{b}.\dfrac{a-c}{a}}+\sqrt{\dfrac{c}{a}.\dfrac{b-c}{b}}\le1\)
Áp dụng BĐT AM-GM ta có:
\(VT\le\dfrac{\dfrac{c}{b}+\dfrac{a-c}{a}}{2}+\dfrac{\dfrac{c}{a}+\dfrac{b-c}{b}}{2}=1\)
a) Gõ link này nha: http://olm.vn/hoi-dap/question/1078496.html
Áp dụng bấ đẳng thức Bu-nhia-cốp-xki:
\(\left(\sqrt{c}.\sqrt{a-c}+\sqrt{b-c}.\sqrt{c}\right)^2\le\left(c+b-c\right)\left(a-c+c\right)=ab\)
\(\Rightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
\(\Rightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}-\sqrt{ab}\le0\)
Sửa đề \(a;b>c>0\)
Giả sử \(\sqrt{ab}\ge\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\)
\(\Leftrightarrow ab\ge c\left(a-c\right)+c\left(b-c\right)+2c\sqrt{\left(a-c\right)\left(b-c\right)}\)
\(\Leftrightarrow ab-ac+c^2-bc+c^2-2c\sqrt{\left(a-c\right)\left(b-c\right)}\ge0\)
\(\Leftrightarrow\left(a-c\right)\left(b-c\right)-2c\sqrt{\left(a-c\right)\left(b-c\right)}+c^2\ge0\)
\(\Leftrightarrow\left(\sqrt{\left(a-c\right)\left(b-c\right)}\right)^2-2c\sqrt{\left(a-c\right)\left(b-c\right)}+c^2\ge0\)
\(\Leftrightarrow\left(\sqrt{\left(a-c\right)\left(b-c\right)}-c\right)^2\ge0\)đúng với \(\forall a;b>c>0\)
Đặt \(\sqrt{c.\left(a-c\right)}+\sqrt{c.\left(b-c\right)}\) = A
Ta có A^2 = \(\left(\sqrt{\left(a-c\right).c}+\sqrt{c.\left(b-c\right)}\right)^2\)
Áp dụng bđt bunhiacopxki ta có A^2 <= \(\left(\sqrt{a-c}^2+\sqrt{c^2}\right).\left(\sqrt{c^2}+\sqrt{b-c^2}\right)\)
= (a-c+c).(c+b-c) = ab
<=> A<= \(\sqrt{ab}\)=> ĐPCM
Dấu"=" <=> a-c = c và c = b-c
<=> a=b=2c>0
Ta có bất đẳng thức bunhicopxki
\(\sqrt{ax}+\sqrt{by}\le\sqrt{\left(a+x\right)\left(b+y\right)}\)
Áp dụng vào ta có:
\(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{\left(a-c+c\right)\left(b-c+c\right)}\le\sqrt{ab}\)
Dấu bằng xảy ra khi a-c = b-c