Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách làm như trên là không sai, tuy nhiên để chặt chẽ hơn bạn có thể làm như thế này:
Ta có:\(\left\{{}\begin{matrix}4a>4b\\-2>-3\end{matrix}\right.\), cộng 2 vế của bất phương trình ta được \(4a-2>4b-3\left(ĐPCM\right)\)
a) Ta có: a>b => 2a > 2b (nhân 2 vế với 2)
=> 2a - 3 > 2b - 3 (cộng 2 vế với -3)
b) Ta có: -4a+1 < -4b+ 1 => -4a < -4b ( cộng 2 vế với -1)
=> a > b (nhân 2 vế với -1/4)
c) Ta có: 3-4a < 5c+2 => 3-4a-3 < 5c+2-3 (cộng 2 vế với -3)
=> -4a < 5c-1
Mà 5c-1 < -4b nên -4a < -4b => a > b (nhân cả 2 vế với -1/4)
3a+5>3b+2
Ta có:
a>b => 3a>3b
=> 3a+5>3b+5
Lại có: 5>2
=> 3b+5>3b+2
=> 3a+5>3b+5>3b+2
Hay 3a+5>3b+2
a, vì a > b nên 3a > 3b => 3a + 2 > 3b + 2 (1)
Mà 3a + 2 < 3a + 5 (2)
Từ (1) và (2) suy vô ra : 3a + 5 > 3b+2 (đpcm)
b, vì a > b nên -4a < -4b => 2-4a < 2- 4b
mà 2-4b < 3-4b nên 2-4a < 3-4b
ta có:\(a< b\Rightarrow4a< 4b\) và \(1< 3\)
\(\Rightarrow4a+1< 4b+3\)
Câu b tương tự nhưng nhớ đổi dấu khi nhân vs số âm
2,
a, Nếu 2a + 4 \(\ge\) 2b + 4
thì 2a \(\ge\) 2b hay a \(\ge\) b
b, Nếu 3a - 5 \(\le\) 3b - 5
thì 3a \(\le\) 3b hay a \(\le\) b
3,
a, Nếu a \(\le\) b thì a - b \(\le\) 0 hay 2019(a - b) \(\le\) 0 hay 2019a \(\le\) 2019b hay 2019a + 2020 \(\le\) 2019b + 2020
b, Nếu a \(\le\) b thì -a \(\ge\) -b hay -42a \(\ge\) -42b hay -42a - 24 \(\ge\) -42b - 24
3,
a, Nếu a > b thì 3a > 3b hay 3a + 2 > 3b + 2
b, Nếu a > b thì -a < -b hay -4a < -4b hay -4a - 5 < -4b - 5
Chúc bn học tốt!!
Ta có: \(a>b\Leftrightarrow4a>4b\left(1\right)\) và \(-2>-3\left(2\right)\)
Cộng the từng vế của 2 bất pt: \(\Rightarrow4a-2>4b-3\)