K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2017

\(a^2-\frac{1}{a^2}=a+\frac{1}{a}\Leftrightarrow\left(a+\frac{1}{a}\right)\left(a-\frac{1}{a}\right)=\left(a+\frac{1}{a}\right)\Leftrightarrow\orbr{\begin{cases}\left(a-\frac{1}{a}\right)=1\\\left(a+\frac{1}{a}\right)=0\end{cases}}\)

\(\Rightarrow\left(a-\frac{1}{a}\right)^2=a^2-2+\frac{1}{a^2}=1\Leftrightarrow a^2+\frac{1}{a^2}=2+1=3\)

19 tháng 2 2018

Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức ta có : 

\(\frac{a^2}{a+1}+\frac{b^2}{b+1}\ge\frac{\left(a+b\right)^2}{a+1+b+1}=\frac{1^2}{1+1+1}=\frac{1}{3}\) ( đpcm )

1 tháng 3 2017

mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !

1 tháng 3 2017

bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu

bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)

những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện

3 tháng 2 2018

Áp dụng BĐT AM-GM ta có:

\(\frac{a+1}{b^2+1}=\left(a+1\right)-\frac{ab^2+b^2}{b^2+1}\ge\left(a+1\right)-\frac{ab^2+b^2}{2b}=\left(a+1\right)-\frac{ab+b}{2}\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(VT\ge a+b+c+3-\frac{a+b+c+ab+bc+ac}{2}\)

\(\ge a+b+c+3-\frac{a+b+c+\frac{\left(a+b+c\right)^2}{3}}{2}\)

\(\ge3+3-\frac{3+\frac{3^2}{3}}{2}=3\)

\("="\Leftrightarrow a=b=c=1\)

2 tháng 10 2017

Đặt a  ;  b và c = 1

Ta có: \(\frac{1}{a^2+b^2+2}+\frac{1}{b^2+c^2+2}+\frac{1}{c^2+a^2+2}\)

\(\Leftrightarrow\frac{1}{1^2+1^2+2}+\frac{1}{1^2+1^2+2}+\frac{1}{1^2+1^2+2}\)

\(\Leftrightarrow\frac{1}{1+1+2}+\frac{1}{1+1+2}+\frac{1}{1+1+2}\)

\(\Leftrightarrow\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=\frac{3}{3}=1\)

\(1>\frac{3}{4}\Rightarrow\)Không thể thỏa mãn đề bài hoặc đề sai.

Cách khác: Nếu bấm máy tính casio thì nó ra là \(\frac{3}{2}\)mà \(\frac{3}{2}>\frac{3}{4}\Rightarrow\)Không thể thỏa mãn đề bài hoặc đề sai

cô si ngược đi

17 tháng 3 2016

Ta có: \(a+1-\frac{a+1}{b^2+1}=\frac{ab^2+b^2}{b^2+1}\le\frac{ab^2+b^2}{2b}=\frac{ab}{2}+\frac{b}{2}\) vì \(b^2+1\ge2b\)

nên \(\frac{a+1}{b^2+1}\ge a+1-\frac{b}{2}-\frac{ab}{2}\) Tương tự: 

Vậy ta có: \(VT\ge a+b+c+3-\frac{a+b+c}{2}-\frac{1}{2}\left(ab+bc+ca\right)\)

Vì \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{9}{3}=3\)

nên \(VT\ge3+\frac{a+b+c}{2}-\frac{1}{2}3=3+\frac{3}{2}-\frac{3}{2}=3=VP\)

4 tháng 6 2020

Vì abc = 1 nên ta có thể đặt \(\left(a;b;c\right)\rightarrow\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\). Khi đó: 

\(VT=\Sigma_{cyc}\frac{1}{\sqrt{\frac{x}{z}+\frac{x}{y}+2}}=\Sigma_{cyc}\frac{\sqrt{yz}}{\sqrt{xy+xz+2yz}}\)

\(\Rightarrow VT^2\le\left(1+1+1\right)\left(\Sigma_{cyc}\frac{yz}{xy+xz+2yz}\right)\left(\text{ }\right)\)(Theo BĐT Cauchy-Schwarz)

\(\le\frac{3}{4}\left[\Sigma_{cyc}yz\left(\frac{1}{xy+yz}+\frac{1}{xz+yz}\right)\right]=\frac{3}{4}\left(\Sigma_{cyc}\frac{xy+yz}{xy+yz}\right)=\frac{9}{4}\)

\(\Rightarrow VT\le\frac{3}{2}\)

Đẳng thức xảy ra khi x = y = z hay a = b = c = 1

3 tháng 8 2017

bạn xem lại cái đề được không

với a=1/2; b=7/10; c=13/10 thì bất đẳng thức trên không đúng

3 tháng 8 2017

Sửa đề: a+b+c>=3

Hay 6<= 2(a+b+c)

Theo BĐT Cauchy-Schwarz dạng Engel

\(\frac{a^2}{a+2}+\frac{b^2}{b+2}+\frac{c^2}{c+2}\ge\frac{\left(a+b+c\right)^2}{a+b+c+6}\ge\frac{\left(a+b+c\right)^2}{3\left(a+b+c\right)}=\frac{a+b+c}{3}\ge\frac{3}{3}=1\)

p/s: ko chắc lắm bạn ktra giúp mình nha