Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 2bd = c(b + d)
=> (a + c).d = bc + cd
=> ad + cd = bc + cd
=> ad = bc
=> \(\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Ta có : 2bd = c (b + d )
=) ( a + c ). d = bc + cd
=) ad + cd = bc + cd
=) ad = bc
=) a/b = c/ d ( đpcm)
Giải thích các bước giải: Ta có : a+c=2b, 2bd=c(b+d)
-> 2bd=(a+c)d =c(b+d)
-> ad+cd = bc+cd
-> ad=bc
-> a/b=c/d
Ta có 2bd=c(b+d) \(=>\frac{2b}{c}=\frac{b+d}{d}\)
Mà a+c=2b nên \(\frac{a+c}{c}=\frac{b+d}{d}=>\frac{a+c}{b+d}=\frac{c}{d}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a+c}{b+d}=\frac{c}{d}=\frac{a+c-c}{b+d-d}=\frac{a}{b}\)
Vậy \(\frac{a}{b}=\frac{c}{d}\)
2bd=c(b+d)
<=>(a+c)d=bc+cd
<=>ad+cd=bc+cd
<=>ad=bc
<=>\(\frac{a}{b}=\frac{c}{d}\)
<=>\(\frac{a}{c}=\frac{b}{d}\) <=> \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)<=>\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\) (đpcm)
Đặt a +c vào 2bd ta có
(a + c)d = c(b + d)
=> ad + cd = cb + cd
=> ad = cb
=> \(\frac{a}{b}=\frac{c}{d}\)
Đặt a +c vào 2bd ta có
(a + c)d = c(b + d)
=> ad + cd = cb + cd
=> ad = cb
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Ta có:2bd=c(b+d)
Hay (a+c)d=c(b+d)
\(\Rightarrow\frac{c}{d}=\frac{a+c}{b+d}=\frac{a+c-c}{b+d-d}=\frac{a}{b}\)(T/C...)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}-\frac{c}{d}=0\)
Ta có: a + c = 2b
=> d(a + c) = 2bd
mà c(b + d) = 2bd
=> d(a + c) = c(b + d)
=> ad + cd = bc + cd
=> ad = bc
=> \(\frac{a}{b}=\frac{c}{d}\)
Ta có: 2bd = c(b + d)
Mà: a + c = 2b
=> (a + c)d = c(b + d)
=> ad + cd = cb + cd
=> ab = cd
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\) (đpcm0
a + c =2b ( 1 )
2bd = c(b+d) ( 2)
từ (1) và (2) ta được:
( a+ c ) .d = c.( b + d )
theo tính chất phân phối ta có"
ad + cd = cb + cd
=> ad = cb => a/b = c/d
k mknhes
Ta có:
a+c=2b (*1)
2bd=c(b+d) (*2)
Thay (*1) vào (*2) ta có:
(a+c)d=c(b+d)
ad+cd=cb+cd
mà cd=cd
=> ad=cb
=> \(\frac{a}{b}=\frac{c}{d}\)
Từ a+c=2b=> 2bd=(a+c)b=c(b+d)
ab+bc=cb+cd
ab+bc-cb-cd=0
ab-cd=0
ab=cd => a/b=c/d (đpcm)