K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2021

Áp dụng bất đẳng thức AM - GM và kết hợp với giả thiết x + y + z = 3 ta có:

\(B=\sqrt{\dfrac{xy}{xy+z\left(x+y+z\right)}}+\sqrt{\dfrac{yz}{yz+x\left(x+y+z\right)}}+\sqrt{\dfrac{zx}{zx+y\left(x+y+z\right)}}\)

\(B=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}+\sqrt{\dfrac{yz}{\left(y+x\right)\left(z+x\right)}}+\sqrt{\dfrac{zx}{\left(z+y\right)\left(z+x\right)}}\le\dfrac{1}{2}\left(\dfrac{x}{x+z}+\dfrac{y}{y+z}+\dfrac{y}{y+x}+\dfrac{z}{z+x}+\dfrac{z}{z+y}+\dfrac{x}{z+x}\right)\)

\(B\le\dfrac{3}{2}\).

Đẳng thức xảy ra khi x = y = z = 1.

Vậy...

NV
30 tháng 12 2021

\(x+\sqrt{3x+yz}=x+\sqrt{x\left(x+y+z\right)+yz}=x+\sqrt{\left(x+y\right)\left(z+x\right)}\ge x+\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}\)

\(=x+\sqrt{xz}+\sqrt{xy}=\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)

\(\Rightarrow\dfrac{x}{x+\sqrt{3x+yz}}\le\dfrac{x}{\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Tương tự:

\(\dfrac{y}{y+\sqrt{3y+zx}}\le\dfrac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\) ; \(\dfrac{z}{z+\sqrt{3z+xy}}\le\dfrac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Cộng vế với vế ta có đpcm

30 tháng 8 2019

\(B=\sqrt{\frac{xy}{xy+3z}}+\sqrt{\frac{yz}{yz+3x}}+\sqrt{\frac{zx}{zx+3y}}\)

\(=\sqrt{\frac{xy}{xy+z\left(x+y+z\right)}}+\sqrt{\frac{yz}{yz+x\left(x+y+z\right)}}+\sqrt{\frac{zx}{zx+y\left(x+y+z\right)}}\)

\(=\sqrt{\frac{xy}{\left(z+x\right)\left(y+z\right)}}+\sqrt{\frac{yz}{\left(x+y\right)\left(z+x\right)}}+\sqrt{\frac{zx}{\left(x+y\right)\left(y+z\right)}}\)

Áp dụng BĐT cô - si ta có :

\(\sqrt{\frac{xy}{\left(z+x\right)\left(y+z\right)}}\le\frac{1}{2}\left(\frac{x}{z+x}+\frac{y}{y+z}\right)\)

\(\sqrt{\frac{yz}{\left(x+y\right)\left(z+x\right)}}\le\frac{1}{2}\left(\frac{y}{x+y}+\frac{z}{z+x}\right)\)

\(\sqrt{\frac{zx}{\left(x+y\right)\left(y+z\right)}}\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{z}{y+z}\right)\)

\(\Rightarrow B\le\frac{1}{2}\left(\frac{x+y}{x+y}+\frac{y+z}{y+z}+\frac{z+x}{z+x}\right)=\frac{3}{2}\)

Vậy GTLN của B là \(\frac{3}{2}\) khi \(x=y=z=1\)

AH
Akai Haruma
Giáo viên
26 tháng 1 2021

Lời giải:

Áp dụng BĐT AM-GM:

\(\sqrt{\frac{xy}{xy+z}}=\sqrt{\frac{xy}{xy+z(x+y+z)}}=\sqrt{\frac{xy}{(z+x)(z+y)}}\leq \frac{1}{2}\left(\frac{x}{x+z}+\frac{y}{z+y}\right)\)

Hoàn toàn tương tự với các phân thức còn lại suy ra:

\(\sum \sqrt{\frac{xy}{xy+z}}\leq \frac{1}{2}\left(\frac{x+z}{x+z}+\frac{y+z}{y+z}+\frac{x+y}{x+y}\right)=\frac{3}{2}\)

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z=\frac{1}{3}$

5 tháng 3 2019

\(\sum\frac{x}{x+\sqrt{3x+yz}}=\sum\frac{x}{x+\sqrt{x\left(x+y+z\right)+yz}}=\sum\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}\)

Sử dụng BĐT Cauchy-Schwarz, ta có

\(\sum\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}\le\sum\frac{x}{x+\sqrt{\left(\sqrt{xy}+\sqrt{xz}\right)^2}}\)

\(=\sum\frac{x}{x+\sqrt{xy}+\sqrt{xz}}=\sum\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

26 tháng 4 2021

Áp dụng bđt phụ \(\sqrt{ \left(a+b\right)\left(c+d\right)}\ge\sqrt{ac}+\sqrt{bd}\)có 

\(VT=\frac{x}{x+\sqrt{\left(x+y\right)\left(z+x\right)}}+\frac{y}{y+\sqrt{\left(y+x\right)\left(z+y\right)}}+\frac{z}{z+\sqrt{\left(z+x\right)\left(y+z\right)}}\)

\(\le\frac{x}{x+\sqrt{xz}+\sqrt{xy}}+\frac{y}{y+\sqrt{yz}+\sqrt{yx}}+\frac{z}{z+\sqrt{zx}+\sqrt{zy}}\)

\(=\frac{x}{\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}+\frac{y}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}+\frac{z}{\sqrt{z}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}\)

\(=\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

26 tháng 4 2021

bạn sửa lại đề đi ạ

2 tháng 1 2018

Ta có : Áp dụng BĐT Cauchy ba số ở mẫu ta được

\(\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}\ge\dfrac{x}{\dfrac{y+z+1}{3}}+\dfrac{y}{\dfrac{x+z+1}{3}}+\dfrac{z}{\dfrac{x+y+1}{3}}=\dfrac{3x}{y+z+1}+\dfrac{3y}{x+z+1}+\dfrac{3z}{x+y+1}\)Thấy: \(xy+yz+xz\le\dfrac{\left(x+y+z\right)^2}{3}\left(?!\right)\)

Ta phải chứng minh:

\(\dfrac{3x}{y+z+1}+\dfrac{3y}{x+z+1}+\dfrac{3z}{x+y+1}\ge\dfrac{\left(x+y+z\right)^2}{3}\)

\(\dfrac{x}{y+z+1}+\dfrac{y}{x+z+1}+\dfrac{z}{x+y+1}\ge\dfrac{\left(x+y+z\right)^2}{9}\)

\(\dfrac{x}{y+z+1}+\dfrac{y}{x+z+1}+\dfrac{z}{x+y+1}=\dfrac{x^2}{xy+xz+x}+\dfrac{y^2}{xy+yz+y}+\dfrac{z^2}{xz+yz+z}\)

Theo C.B.S

\(\dfrac{x^2}{xy+xz+x}+\dfrac{y^2}{xy+yz+y}+\dfrac{z^2}{xz+yz+z}\ge\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\)

Phải chứng minh

\(\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{\left(x+y+z\right)^2}{9}\)

\(\Leftrightarrow\dfrac{1}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{1}{9}\)

Ta có : \(xy+yz+xz\le x^2+y^2+z^2=3\)

Theo C.B.S : \(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=3\)

\(\Rightarrow2\left(xy+yz+xz\right)+x+y+z\le9\)

\(\Rightarrow\dfrac{1}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{1}{9}\)

=> ĐPCM

16 tháng 3 2018

Đề bài thiếu điều kiện rồi :")))

thêm điều kiện đi rồi giải cho

28 tháng 3 2018

x+y+z=3

16 tháng 9 2017

với \(x+y+z=3\Rightarrow3x=x\left(x+y+z\right)=x^2+xy+xz\Rightarrow3x+yz=\left(x+y\right)\left(x+z\right)\)

tương tự mấy cái kia nhé

Áp dụng bđt bu nhi a ta có \(\left(x+y\right)\left(x+z\right)\ge\left(\sqrt{xz}+\sqrt{xy}\right)^2\Rightarrow\sqrt{\left(x+y\right)\left(x+z\right)}\ge\sqrt{xz}+\sqrt{xy}\)

=> \(x+\sqrt{3x+yz}\ge x+\sqrt{xy}+\sqrt{xz}=\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)

=> \(\frac{x}{x+\sqrt{3x+yz}}\le\frac{x}{\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\) 

tương tự mấy cái kia rồi cộng vào ta có 

\(A\le\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\) (ĐPCM)

17 tháng 9 2017

bằng 1