Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(\frac{a}{b}< 1\)=> a < b
=> a.m < b.m
=> a.m + a.b < b.m + a.b
=> a.(b + m) < b.(a + m)
=> \(\frac{a}{b}< \frac{a+m}{b+m}\)
Trường hợp a cũng là nguyên duơng
Xét a<b và a>b.
Xét a<b trước, ta có:
1-a/b=(b-a)/a..............(1)
1-(a+1)/(b+1)=(b+1-a-1)/(b+1)=(b-a/(b+1...
Từ (1) và (2) ta thấy: (b-a)/a<(b-a)/(b+1) (vì hai phân số có cùng tử phân số nào mẫu lớn thì phân số đó nhỏ hơn). Mà (b-a)/a>(b-a)/(b+1) =>((a+1)/(b+1)<a/b
Xét a>b, ta đặt a=b+m=>a+n=b+m+n
vậy: a/b=(b+m)/b= 1+m/b.....(3)
(a+n)/(b+n)=(b+m+n)/(b+n)=(b+n+m)/(b+n)...
So sánh (3) và (4) cho ta a/b<(a+n)/(b+n)
Nếu a là nguyên âm thì bạn có trừong hợp ngược lại
Nếu a=0 thì a/b=0 khi đó (a+1)/(b+1)=1/(b+1) >0=a/b
Tuơng tự khi a=0 thì (a+n)/b+n)=n/(b+n)>a/b
Ta xét 3 trường hợp a/b=1; a/b<1; a/b>1
+ trường hợp a/b= 1 nền a=b thi a+b/b+m= a/b=1.
+ trường hợp a/b<1 nên a<b nen a+b< b+m
a+m/b+mco "phan bu" toi 1 la b-a/b+m
a/b có "phần bù" tới 1 là b-a/b, vì b-a/ b+m< b-a/b nên a+m/b+m>a/b
+ trường hợp a/b> 1 nên a>b nên a+m >b+m
a+m/ b+m co "phan thừa" so với 1 la a-b/ b+m
a/b có "phần thừa " so với 1 là a-b/m, vì a-b/b+m< a-b/b nên a+m/b+b<a/b
ta xét 3 trường hợp\(\frac{a}{b}\)= 1 ; \(\frac{a}{b}\)< 1 ; \(\frac{a}{b}\)> 1
+ trương hợp \(\frac{a}{b}\)= 1 nên a = b thì \(\frac{a+b}{b+m}\)= \(\frac{a}{b}\)= 1
+ trường hợp \(\frac{a}{b}\)< 1 nên a < b nên a + b < b + m
còn lại tự làm nhé
Ta có:
\(1-\frac{-2015}{-2016}=1-\frac{2015}{2016}=\frac{1}{2016}\)
\(1-\frac{-2016}{-2017}=1-\frac{2016}{2017}=\frac{1}{2017}\)
Vì \(\frac{1}{2016}>\frac{1}{2017}\Rightarrow\frac{-2015}{-2016}< \frac{-2016}{-2017}\)
Đây là cách so sánh phần bù, bạn có thể lên mạng tham khảo thêm nhé :)
Vì a,b,c là các số tự nhiên khác 0 nên a,b,c > 0.
Do vậy a < a + b < a + b + c
b < b + c < a + b + c
c < c + a < a + b + c
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
Do \(\frac{a}{b}< 1\Rightarrow a< b\Rightarrow a.m< b.m\)
Ta có : \(a.\left(b+m\right)=a.b+a.m\)
\(b.\left(a+m\right)=a.b+b.m\)
mà \(a.m< b.m\)\(\Rightarrow\)\(a.b+a.m< a.b+b.m\)
\(\Rightarrow\)\(a.\left(b+m\right)< b.\left(a+m\right)\)
\(\Rightarrow\)\(\frac{a}{b}< \frac{a+m}{b+m}\)
a/b lon hon k nha