Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
$\frac{a}{b}<1\Rightarrow a< b\Rightarrow a-b<0$
Xét hiệu $\frac{a}{b}-\frac{a+m}{b+m}=\frac{am-bm}{b(b+m)}=\frac{m(a-b)}{b(b+m)}<0$ do $a-b<0$ và $a,b,m$ là số tự nhiên $>0$
$\Rightarrow \frac{a}{b}<\frac{a+m}{b+m}$
b.
$\frac{a}{b}>1\Rightarrow a> b\Rightarrow a-b>0$
Xét hiệu $\frac{a}{b}-\frac{a+m}{b+m}=\frac{am-bm}{b(b+m)}=\frac{m(a-b)}{b(b+m)}>0$ do $a-b>0$ và $a,b,m$ là số tự nhiên $>0$
$\Rightarrow \frac{a}{b}>\frac{a+m}{b+m}$
1. Do \(\frac{a}{b}< 1\Leftrightarrow\)a<b \(\Leftrightarrow\)a+n<b+n
Ta có: \(\frac{a}{b}\)= 1 - \(\frac{a-b}{b}\)
\(\frac{a+n}{b+n}\)= 1- \(\frac{a-b}{b+n}\)
Do \(\frac{a-b}{b}\)>\(\frac{a-b}{b+n}\)=> \(\frac{a}{b}\)<\(\frac{a+n}{b+n}\)
2.Tương tự
Vì \(\frac{a}{b}>1\left(a,b\inℕ,b\ne0\right)\) nên \(a>b\)
\(a>b\Rightarrow a=b+n\left(n\inℕ^∗\right)\)
Ta có : \(\frac{a}{b}=\frac{b+n}{b}=1+\frac{n}{b}\) ; \(\frac{a+m}{b+m}=\frac{b+m+n}{b+m}=1+\frac{n}{b+m}\)
Mà \(\frac{n}{b}>\frac{n}{b+m}\) nên \(1+\frac{n}{b}>1+\frac{n}{b+m}\)
hay \(\frac{a}{b}>\frac{a+m}{b+m}\) (đpcm)
a/b=1+(a-b/b)
a+m/b+m=1+(a-b/b+m)
a-b=a-b=> so sánh mẫu
b+m>b=> a/b>a+m/b+m
ta có; a=c.m+k ; b=d.m+k (a>b)
a-b=(c.m+k)-(d.m+k)=c.m+k-d.m-k=(c-d).m+(k-k)=(c-d).m
vì (c-d).m chia hết cho m nên a-b chia hết cho m
tích mình nhé các bạn !
a)ta có:\(\frac{a}{b}=\frac{a.\left(b+m\right)}{b.\left(b+m\right)}=\frac{ab+am}{b^2+bm}\)
\(\frac{a+m}{b+m}=\frac{\left(a+m\right)b}{\left(b+m\right)b}=\frac{ab+bm}{bm+b^2}\)
vì a<b =>am<bm=>ab+am<ab+bm
hay\(\frac{a}{b}< \frac{a+m}{b+m}\)
b)tương tự như phần a