K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 9 2024

Lời giải:
a. 

$\frac{a}{b}<1\Rightarrow a< b\Rightarrow a-b<0$

Xét hiệu $\frac{a}{b}-\frac{a+m}{b+m}=\frac{am-bm}{b(b+m)}=\frac{m(a-b)}{b(b+m)}<0$ do $a-b<0$ và $a,b,m$ là số tự nhiên $>0$

$\Rightarrow \frac{a}{b}<\frac{a+m}{b+m}$

b.

$\frac{a}{b}>1\Rightarrow a> b\Rightarrow a-b>0$

Xét hiệu $\frac{a}{b}-\frac{a+m}{b+m}=\frac{am-bm}{b(b+m)}=\frac{m(a-b)}{b(b+m)}>0$ do $a-b>0$ và $a,b,m$ là số tự nhiên $>0$

$\Rightarrow \frac{a}{b}>\frac{a+m}{b+m}$

12 tháng 2 2017

1. Do \(\frac{a}{b}< 1\Leftrightarrow\)a<b \(\Leftrightarrow\)a+n<b+n

Ta có: \(\frac{a}{b}\)= 1 - \(\frac{a-b}{b}\)

          \(\frac{a+n}{b+n}\)= 1- \(\frac{a-b}{b+n}\)

Do \(\frac{a-b}{b}\)>\(\frac{a-b}{b+n}\)=> \(\frac{a}{b}\)<\(\frac{a+n}{b+n}\)

2.Tương tự

21 tháng 3 2017

ko hiểu

17 tháng 4 2020

Vì \(\frac{a}{b}>1\left(a,b\inℕ,b\ne0\right)\) nên \(a>b\)

\(a>b\Rightarrow a=b+n\left(n\inℕ^∗\right)\)

Ta có : \(\frac{a}{b}=\frac{b+n}{b}=1+\frac{n}{b}\) ; \(\frac{a+m}{b+m}=\frac{b+m+n}{b+m}=1+\frac{n}{b+m}\)

Mà \(\frac{n}{b}>\frac{n}{b+m}\) nên \(1+\frac{n}{b}>1+\frac{n}{b+m}\)

hay \(\frac{a}{b}>\frac{a+m}{b+m}\)   (đpcm)

22 tháng 1 2018

a/b=1+(a-b/b)

a+m/b+m=1+(a-b/b+m)

a-b=a-b=> so sánh mẫu

b+m>b=> a/b>a+m/b+m

20 tháng 1 2016

ta có; a=c.m+k    ;      b=d.m+k  (a>b)

a-b=(c.m+k)-(d.m+k)=c.m+k-d.m-k=(c-d).m+(k-k)=(c-d).m

vì (c-d).m chia hết cho m nên a-b chia hết cho m

tích mình nhé các bạn !

26 tháng 3 2017

a)ta có:\(\frac{a}{b}=\frac{a.\left(b+m\right)}{b.\left(b+m\right)}=\frac{ab+am}{b^2+bm}\)

\(\frac{a+m}{b+m}=\frac{\left(a+m\right)b}{\left(b+m\right)b}=\frac{ab+bm}{bm+b^2}\)

vì a<b =>am<bm=>ab+am<ab+bm

hay\(\frac{a}{b}< \frac{a+m}{b+m}\)

b)tương tự như phần a