K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2019

Dùng BĐT quen thuộc: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) nhé! Một dòng là đủ.

\(\frac{1}{\left(4a^2+4b^2\right)}+\frac{1}{8ab}\ge\frac{4}{4a^2+8ab+4b^2}==\frac{4}{4\left(a^2+2ab+a^2\right)}=\frac{1}{\left(a+b\right)^2}^{\left(đpcm\right)}\)

27 tháng 1 2019

Dấu "=" xảy ra \(\Leftrightarrow\frac{1}{4a^2+4b^2}=\frac{1}{8ab}\Leftrightarrow4a^2+4b^2=8ab\Leftrightarrow a=b\)

22 tháng 4 2019

\(A=\frac{2ab}{4ab}+\frac{2ab}{a^2+4b^2}+\frac{1}{8ab}-\frac{1}{2}\)

áp dụng bđt AM-GM , a,b> 0

\(\Rightarrow A\ge2ab\left(\frac{4}{4ab+a^2+4b^2}\right)+\frac{1}{8ab}-\frac{1}{2}\)

\(\Rightarrow A\ge\frac{8ab}{1}+\frac{1}{8ab}-\frac{1}{2}\)

\(\Rightarrow A\ge2-\frac{1}{2}=\frac{3}{2}\)

10 tháng 4 2020

Cách làm như trên là không sai, tuy nhiên để chặt chẽ hơn bạn có thể làm như thế này:

Ta có:\(\left\{{}\begin{matrix}4a>4b\\-2>-3\end{matrix}\right.\), cộng 2 vế của bất phương trình ta được \(4a-2>4b-3\left(ĐPCM\right)\)