K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2017

\(\dfrac{xy}{ay+bx}=\dfrac{yz}{bz+cy}=\dfrac{zx}{cx+az}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(1\right)\)

Ta có: \(\dfrac{xy}{ay+bx}=\dfrac{yz}{bz+cy}=\dfrac{zx}{cx+az}\)

\(\Rightarrow\dfrac{xyz}{ayz+bxz}=\dfrac{xyz}{bxz+cxy}=\dfrac{xyz}{cxy+ayz}\)

\(\Rightarrow ayz+bxz=bxz+cxy=cxy+ayz\)

\(\Rightarrow\left\{{}\begin{matrix}ayz+bxz=bxz+cxy\\ayz+bxz=cxy+ayz\\bxz+cxy=cxy+ayz\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}ayz=cxy\\bxz=cxy\\bxz=ayz\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}az=cx\\bz=cy\\bx=ay\end{matrix}\right.\left(2\right)\)

Thay (2) vào (1) ta có :

\(\dfrac{xy}{2ay}=\dfrac{yz}{2bz}=\dfrac{xz}{2cx}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

\(\Rightarrow\dfrac{x}{2a}=\dfrac{y}{2b}=\dfrac{z}{2c}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(3\right)\)

\(\Rightarrow\dfrac{x^2}{4a^2}=\dfrac{y^2}{4b^2}=\dfrac{z^2}{4c^2}=\dfrac{\left(x^2+y^2+z^2\right)^2}{\left(a^2+b^2+c^2\right)^2}=\)\(\dfrac{x^2+y^2+z^2}{4a^2+4b^2+4c^2}\)

\(\Rightarrow\dfrac{x^2+y^2+y^2}{a^2+b^2+c^2}=\dfrac{1}{4}\left(4\right).\)Thay (3) vào (2) ta có :

\(\dfrac{x}{2a}=\dfrac{y}{2b}=\dfrac{z}{2c}=\dfrac{1}{4}\Rightarrow\left\{{}\begin{matrix}x=\dfrac{a}{2}\\y=\dfrac{b}{2}\\z=\dfrac{c}{2}\end{matrix}\right.\)

25 tháng 11 2017

CD+CH+CA=3C haha

Violympic toán 7

26 tháng 8 2018

với x=y=z khác 0 và a,b,c khác nhau là 1 số bất kỳ khác 0 thì (1) thỏa mãn và (2) không thỏa mãn

=> Không thể CM

26 tháng 8 2018

ta có: \(\frac{x^2-yz}{a}=\frac{y^2-zx}{b}=\frac{z^2-xy}{c}\)

\(\Rightarrow\frac{a}{x^2-yz}=\frac{b}{y^2-zx}=\frac{c}{z^2-xy}\) (*)

\(\Rightarrow\frac{a^2}{\left(x^2-yz\right)^2}=\frac{bc}{\left(y^2-zx\right).\left(z^2-xy\right)}=\frac{a^2-bc}{\left(x^2-yz\right)^2-\left(y^2-zx\right).\left(z^2-xy\right)}\)

\(=\frac{a^2-bc}{x^4-3x^2yz+xy^3+xz^3}=\frac{a^2-bc}{x.\left(x^3-3xyz+y^3+z^3\right)}\)

\(\Rightarrow\frac{a^2-bc}{x}=\frac{a^2}{\left(x^2-yz\right)^2}.\left(x^3-3xyz+y^3+z^3\right)\)

Làm tương tự như trên. ta có:

\(\frac{b^2-ca}{y}=\frac{b^2}{\left(y^2-zx\right)^2}.\left(x^3-3xyz+y^3+z^3\right)\)

\(\frac{c^2-ab}{z}=\frac{c^2}{\left(z^2-xy\right)^2}.\left(x^3-3xyz+y^3+z^3\right)\)

Từ (*) \(\Rightarrow\frac{a^2-bc}{x}=\frac{b^2-ca}{y}=\frac{c^2-ab}{z}\left(đpcm\right)\)

Đặt x/a=y/b=z/c=k

=>x=ak; y=bk; z=ck

\(\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\dfrac{a^2k^2+b^2k^2+c^2k^2}{a^4k^2+b^4k^2+c^4k^2}=\dfrac{1}{a^2+b^2+c^2}\)