Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(S=\frac{3\left(a^4+b^4+c^4\right)}{\left(a^2+b^2+c^2\right)^2}+\frac{ab+bc+ca}{a^2+b^2+c^2}\ge2\)
\(\Leftrightarrow\frac{3\left(a^4+b^4+c^4\right)-\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)^2}-\frac{a^2+b^2+c^2-ab-bc-ca}{a^2+b^2+c^2}\ge0\)
\(\Leftrightarrow\frac{2\Sigma_{cyc}\left(a+b\right)^2\left(a-b\right)^2}{2\left(a^2+b^2+c^2\right)^2}-\frac{\Sigma_{cyc}\left(a^2+b^2+c^2\right)\left(a-b\right)^2}{2\left(a^2+b^2+c^2\right)^2}\ge0\)
\(\Leftrightarrow\Sigma_{cyc}\left(a^2+4ab+b^2-c^2\right)\left(a-b\right)^2\ge0\)
Giả sử \(a\ge b\ge c\Rightarrow c^2+4ca+a^2-b^2\ge0\)
Ta có: \(VT=\left(a^2+4ab+b^2-c^2\right)\left(a-b\right)^2+\left(b^2+4bc+c^2-a^2\right)\left(b-c\right)^2+\left(c^2+4ca+a^2-b^2\right)\left(a-b+b-c\right)^2\)
\(=\left(2a^2+4ab+4ca\right)\left(a-b\right)^2+\left(2c^2+4ca+4bc\right)\left(b-c\right)^2+\left(c^2+4ca+a^2-b^2\right)\left(a-b\right)\left(b-c\right)\ge0\)Ta có đpcm.
Đẳng thức xảy ra khi \(a=b=c\)
b) \(\Leftrightarrow\frac{a^3+b^3+c^3-3abc}{abc}-\frac{9\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2}\ge0\)
\(\Leftrightarrow\left(a^2+b^2+c^2-ab-bc-ca\right)\left(\frac{a+b+c}{abc}-\frac{9}{a^2+b^2+c^2}\right)\ge0\) (phân tích cái tử của phân thức thức nhất thành nhân tử rồi nhóm lại)
\(\Leftrightarrow\left[\frac{3}{4}\left(a-b\right)^2+\frac{1}{4}\left(a+b-2c\right)^2\right]\left(\frac{\left(a+b+c\right)\left(a^2+b^2+c^2\right)-9abc}{abc\left(a^2+b^2+c^2\right)}\right)\ge0\) (đúng)
Đẳng thức xảy ra khi \(a=b=c\)
P/s: Đáng ráng phân tích tiếp cái ngoặc phía sau cho đẹp nhưng lười quá nên thôi:v (dùng Cauchy nó cũng đúng rồi nên phân tích làm gì cho mệt)
\(\frac{3}{ab+bc+ca}=\frac{9}{3\left(ab+bc+ca\right)}\)
áp dụng hệ quả bun nhi a ta có: \(A\ge\frac{\left(3+1\right)^2}{\left(a^2+b^2+c^2+2ab+2bc+2ca\right)+ab+bc+ca}\)\(\ge\frac{16}{\left(a+b+c\right)^2+\frac{\left(a+b+c\right)^2}{3}}=12\)
bằng khi a=b=c=1/3
tạ duy phương:
\(\frac{a_1^2}{x_1}+\frac{a^2_2}{x_2}\ge\frac{\left(a_1+a_2\right)^2}{x_1+x_2}\)tương tự áp dụng cho nhiều số
áp dụng bất đẳng thức côsi
\(\frac{a^2}{b-1}+4\left(b-1\right)\ge2\sqrt{\frac{a^2}{b-1}\cdot4\left(b-1\right)}=4a\)
\(\frac{b^2}{c-1}+4\left(c-1\right)\ge4b\)
\(\frac{c^2}{a-1}+4\left(a-1\right)\ge4c\)
cộng vế theo vế
\(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}+4\left(a-1\right)+4\left(b-1\right)+4\left(c-1\right)\ge4a+4b+4c\)
\(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge4\left(a+b+c\right)-4\left(a+b+c\right)+4\cdot3=12\)(đpcm)
Cách khác:
\(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)-3}\)
Đặt \(a+b+c=x>3\)
Ta cần chứng minh
\(\frac{x^2}{x-3}\ge12\)
\(\Leftrightarrow\frac{\left(x-6\right)^2}{x-3}\ge0\)(đúng)
Vậy ta có điều phải chứng minh
1. BĐT ban đầu
<=> \(\left(\frac{1}{3}-\frac{b}{a+3b}\right)+\left(\frac{1}{3}-\frac{c}{b+3c}\right)+\left(\frac{1}{3}-\frac{a}{c+3a}\right)\ge\frac{1}{4}\)
<=>\(\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)
<=> \(\frac{a^2}{a^2+3ab}+\frac{b^2}{b^2+3bc}+\frac{c^2}{c^2+3ac}\ge\frac{3}{4}\)
Áp dụng BĐT buniacoxki dang phân thức
=> BĐT cần CM
<=> \(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ac\right)}\ge\frac{3}{4}\)
<=> \(a^2+b^2+c^2\ge ab+bc+ac\)luôn đúng
=> BĐT được CM
2) \(a+b+c\le ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)\(\Leftrightarrow\)\(\left(a+b+c\right)^2-3\left(a+b+c\right)\ge0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a+b+c-3\right)\ge0\)\(\Leftrightarrow\)\(a+b+c\ge3\)
ko mất tính tổng quát giả sử \(a\ge b\ge c\)
Có: \(3\le a+b+c\le ab+bc+ca\le3a^2\)\(\Leftrightarrow\)\(3a^2\ge3\)\(\Leftrightarrow\)\(a\ge1\)
=> \(\frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+a}\le\frac{3}{1+2a}\le1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)
Ta có: \(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge\frac{\left(a+b+c\right)^2}{a+b+c-3}\)
Vậy ta chỉ cần chứng minh \(\frac{\left(a+b+c\right)^2}{a+b+c-3}\ge12\) với \(a;b;c>1\)
Thật vậy, do \(a;b;c>1\Rightarrow a+b+c-3>0\) biến đổi tương đương ta có:
\(\Leftrightarrow\left(a+b+c\right)^2\ge12\left(a+b+c-3\right)\)
\(\Leftrightarrow\left(a+b+c\right)^2-12\left(a+b+c\right)+36\ge0\)
\(\Leftrightarrow\left(a+b+c-6\right)^2\ge0\) (luôn đúng)
BĐT được chứng minh, dấu "=" xảy ra khi \(a=b=c=2\)
Bài 1:
a) Áp dụng BĐT Cô-si:
\(VT=a-1+\frac{1}{a-1}+1\ge2\sqrt{\frac{a-1}{a-1}}+1=2+1=3\)
Dấu "=" xảy ra \(\Leftrightarrow a=2\).
b) BĐT \(\Leftrightarrow a^2+2\ge2\sqrt{a^2+1}\)
\(\Leftrightarrow a^2+1-2\sqrt{a^2+1}+1\ge0\)
\(\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\) ( LĐ )
Dấu "=" xảy ra \(\Leftrightarrow a=0\).
Bài 2: tương tự 1b.
Bài 3:
Do \(a,b,c\) dương nên ta có các BĐT:
\(\frac{a}{a+b+c}< \frac{a}{a+b}< \frac{a+c}{a+b+c}\)
Tương tự: \(\frac{b}{a+b+c}< \frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{a+b+c}< \frac{c}{c+a}< \frac{c+b}{a+b+c}\)
Cộng theo vế 3 BĐT:
\(\frac{a+b+c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{2\left(a+b+c\right)}{a+b+c}\)
\(\Leftrightarrow1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)( đpcm )
\(\frac{a^2}{b-1}+4\left(b-1\right)\ge4a\)
tương tụ,,,rồi cộng vô