K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2020

1, \(A=\frac{9}{x+1}-\frac{8}{1-x}-\frac{16}{x^2-1}\)

\(=\frac{9}{x+1}-\frac{8}{1-x}-\frac{16}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{9\left(1-x\right)\left(x-1\right)}{\left(x+1\right)\left(1-x\right)\left(x-1\right)}-\frac{8\left(x+1\right)\left(x-1\right)}{\left(1-x\right)\left(x+1\right)\left(x-1\right)}-\frac{16\left(1-x\right)}{\left(1-x\right)\left(x+1\right)\left(x-1\right)}\)

\(=\frac{9\left(1-x\right)\left(x-1\right)-8\left(x+1\right)\left(x-1\right)-16\left(1-x\right)}{\left(x+1\right)\left(x-1\right)\left(1-x\right)}\)

\(=\frac{18x-9-9x^2-8x^2+8-16+16x}{\left(x+1\right)\left(x-1\right)\left(1-x\right)}=\frac{-17x^2+34x-17}{\left(x+1\right)\left(x-1\right)\left(1-x\right)}\)

\(=\frac{-17\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)\left(1-x\right)}=\frac{-17\left(x-1\right)}{\left(x+1\right)\left(1-x\right)}\)

12 tháng 9 2020

2, \(B=\frac{x^2+10x+25}{x+5}-\frac{x^2-6x+9}{x-3}\)

\(=\frac{\left(x+5\right)^2}{x+5}-\frac{\left(x-3\right)^2}{x-3}=x+5-x+3=8\)

6 tháng 2 2020

\(b, 8(a^3+b^3+c^3)≥(a+b)^3 + (b+c)^3 + (c+a)^3 \) với \(a,b,c>0\)

Ta biến đổi thành: \(4\left(a^3+b^3\right)-\left(a+b\right)^3+4\left(b^3+c^3\right)-\left(b+c\right)^3+4\left(c^3+a^3\right)-\left(c+a\right)^3\ge0\)

Xét: \(4\left(a^3+b^3\right)-\left(a+b\right)^3\)

\(=\left(a+b\right)\left[4\left(a^2-ab+b^2\right)-\left(a+b\right)^2\right]\)

\(=3\left(a+b\right)\left(a-b\right)^2\ge0\)

Tương tự như trên với:  \(4\left(b^3+c^3\right)-\left(b+c\right)^3\) và \(4\left(c^3+a^3\right)-\left(c+a\right)^3\)

\(\RightarrowĐpcm\)(Viết cái đề ra ý)

Đẳng thức xảy ra \(\Leftrightarrow a=b=c\)

19 tháng 3 2019
a)8(a^3+b^3+c^3)>=(a+b)^3+(b+c)^3+(c+a)^3 =>8(a^3+b^3+c^3)>=2(a^3+b^3+c^3)+3ab(a+b)+3bc(b+c)+3ca(c+a) =>6(a^3+b^3+c^3)>=3ab(a+b)+3bc(b+c)+3ca(c+a) (*) mà a^3+b^3>=ab(a+b) =>(*) luôn đúng (đpcm) b)(a+b+c)^3>=a^3+b^3+c^3+24abc (*) => a^3+b^3+c^3+3 (a+b)(b+c)(c+a)>=a^3+b^3+c^3+24abc mà a+b>=2√ab Ta có a^3+b^3+c^3+3(2√ab)(2√bc)(2√ca)=a^3+b^3+c^3+24abc Mà a^3+b^3+c^3+3(a+b)(b+c)(c+a)>=a^3+b^3+c^3+3(2√ab)(2√bc)(2√ca) => (*) luôn đúng
2 tháng 10 2019

Áp dụng BĐT \(4x^3+4y^3\ge\left(x+y\right)^3\),ta được:

\(4a^3+4b^3\ge\left(a+b\right)^3\);\(4b^3+4c^3\ge\left(b+c\right)^3\);\(4a^3+4c^3\ge\left(a+c\right)^3\)

\(\Rightarrow8a^3+8b^3+8c^3\ge\left(a+b\right)^3+\left(b+c\right)^3+\left(a+c\right)^3\)

\(\Leftrightarrow8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(b+c\right)^3+\left(a+c\right)^3\)

29 tháng 3 2018

\(a+b+c=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)=0

\(\Leftrightarrow\)\(a^3+ab^2+ac^2-a^2b-a^2c-abc+a^2b+b^3+bc^2-ab^2-\)

\(abc-b^2c+ca^2+bc^2+c^3-abc-ac^2-bc^2\)=0

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\Leftrightarrow a^3+b^3-3abc=-c^3\)

29 tháng 3 2018

bạn thử tra mạng đi

9 tháng 11 2017

Sửa đề: CMR: \(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{1}{5}\left(a+b+c\right)\)

Chứng minh BĐT phụ:

  \(\frac{x^2}{m}+\frac{y^2}{n}\ge\frac{\left(x+y\right)^2}{m+n}\)\(\forall m;n>0\)Tự chứng minh

Áp dụng bđt trên, ta có

\(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{2a+3b+2b+3c+2c+3a}=\frac{1}{5}\left(a+b+c\right)\)

Vậy..........