K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2021

áp dụng BDT AM-GM

\(=>a^2+b^2+c^2\ge3\sqrt[3]{\left(abc\right)^2}\)

\(=>1\ge3\sqrt[3]{\left(abc\right)^2}=>1\ge27\left(abc\right)^2\)\(=>27\left(abc\right)^2\le1=>3\left(abc\right)^2\le\dfrac{1}{9}=>\left(abc\right)^2\le\dfrac{1}{27}=>abc\le\dfrac{1}{3\sqrt{3}}\)

\(=>\dfrac{8}{9abc}\ge\dfrac{8}{9.\dfrac{1}{3\sqrt{3}}}=\dfrac{8\sqrt{3}}{3}\)

\(S=a+b+c+\dfrac{1}{abc}=a+b+c+\dfrac{1}{9abc}+\dfrac{8}{9abc}\)

\(=>a+b+c+\dfrac{1}{9abc}\ge4\sqrt[4]{\dfrac{1}{9}}=\dfrac{4}{\sqrt{3}}\)

\(=>S\ge\dfrac{4}{\sqrt{3}}+\dfrac{8}{\sqrt{3}}=4\sqrt{3}\)

dấu"=" xyar ra<=>a=b=c=\(\dfrac{1}{\sqrt{3}}\)

 

4 tháng 7 2021

Các bn mà cop thì nhớ giải thích giúp mik đoạn \(a^2+b^2+c^2\ge3\sqrt[3]{abc}\) với

8 tháng 9 2016

ui..khó qw ~ mún giải lắm nhưng hk đc...e ms lp 7 thoy ak***ahihi^^

10 tháng 9 2016

nè  đọc cái bất đnagử thức shur và kĩ năng đặt ẩn p-q-r đi là giải ra , nên tìm kiếm trong ộng tổ google đi nhé\

17 tháng 4 2020

bbnfcfib hzj 65637664ytcfc byc vvh v

30 tháng 6 2018

Bài 2:

Áp dụng BĐT: \(x^2+y^2+z^2\ge xy+yz+xz\), ta có:

\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+a^2c^2\) (1)

Lại áp dụng tương tự ta có:

\(\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2\ge ab^2c+abc^2+a^2bc\)

\(\Rightarrow a^2b^2+b^2c^2+a^2c^2\ge abc\left(a+b+c\right)\) (2)

Từ (1) và (2) suy ra:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

30 tháng 6 2018

Bài 1:

Áp dụng BĐT Cô -si, ta có:

\(\dfrac{a^2}{b^3}+\dfrac{1}{a}+\dfrac{1}{a}\ge\sqrt[3]{\dfrac{a^2}{b^3}.\dfrac{1}{a}.\dfrac{1}{a}}=\dfrac{3}{b}\)

\(\dfrac{b^2}{c^3}+\dfrac{1}{b}+\dfrac{1}{b}\ge\sqrt[3]{\dfrac{b^2}{c^3}.\dfrac{1}{b}.\dfrac{1}{b}}=\dfrac{3}{c}\)

\(\dfrac{c^2}{a^3}+\dfrac{1}{c}+\dfrac{1}{c}\ge\sqrt[3]{\dfrac{c^2}{a^3}.\dfrac{1}{c}.\dfrac{1}{c}}=\dfrac{3}{a}\)

Cộng vế theo vế ta được:

\(\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{a^2}{a^3}+\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\ge3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Leftrightarrow\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{c^2}{a^3}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

p/s: không chắc lắm, có gì sai xót xin giúp đỡ

25 tháng 4 2018

Tớ chưa học bđt Cauchy-Schwwarz và hệ quả AM-GM thì sao?

10 tháng 5 2018

\(\dfrac{a^3}{b+c}+\dfrac{b^3}{a+c}+\dfrac{c^3}{a+b}\)

\(=\dfrac{a^4}{ab+ac}+\dfrac{b^4}{ab+bc}+\dfrac{c^4}{ac+bc}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ac\right)}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)}\)

\(=\dfrac{a^2+b^2+c^2}{2}=\dfrac{1}{2}\)

Dấu "=" xảy ra khi: \(a=b=c=\dfrac{1}{\sqrt{3}}\)

16 tháng 9 2020

Đặt \(A=\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\)

Ta có : \(\frac{a}{b^2+c^2}=\frac{a}{3-a^2}=\frac{a}{\sqrt{\left(3-a^2\right)\left(3-a^2\right)}}=\frac{a^2}{a\sqrt{\left(3-a^2\right)\left(3-a^2\right)}}\)

\(=\frac{a^2\sqrt{2}}{\sqrt{2a^2\left(3-a^2\right)\left(3-a^2\right)}}\)

Theo BĐT Cô - si ta có :

\(0< \sqrt[3]{2a^2.\left(3-a^2\right).\left(3-a^2\right)}\le\frac{2a^2+3-a^2+3-a^2}{3}=2\)

\(\Leftrightarrow0< 2a^2.\left(3-a^2\right)\left(3-a^2\right)\le8\)

\(\Leftrightarrow0< \sqrt{2a^2\left(3-a^2\right)\left(3-a^2\right)}\le2\sqrt{2}\)

\(\Leftrightarrow\frac{a^2\sqrt{2}}{\sqrt{2a^2\left(3-a^2\right)\left(3-a^2\right)}}\ge\frac{a^2\sqrt{2}}{2\sqrt{2}}=\frac{a^2}{2}\)

Hay : \(\frac{a}{b^2+c^2}\ge\frac{a^2}{2}\)

Chứng minh tương tự ta có : \(\frac{b}{c^2+a^2}\ge\frac{b^2}{2};\frac{c}{a^2+b^2}\ge\frac{c^2}{2}\)

Do đó : \(A\ge\frac{1}{2}\left(a^2+b^2+c^2\right)=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Vậy \(Min\) \(A=\frac{3}{2}\) khi \(a=b=c=1\)

17 tháng 9 2020

Gọi biểu thức là N

Dự đoán \(MinN=\frac{3}{2}\)khi a = b = c = 1, ta dùng UCT giải quyết bài toán

Ta viết lại \(N=\frac{a}{3-a^2}+\frac{b}{3-b^2}+\frac{c}{3-c^2}\)(do \(a^2+b^2+c^2=3\)theo giả thiết)

Xét bất đẳng thức phụ \(\frac{a}{3-a^2}\ge\frac{a^2}{2}\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{a\left(a+2\right)\left(a-1\right)^2}{2\left(3-a^2\right)}\ge0\)(Đúng vì \(3-a^2=b^2+c^2>0\)và a > 0)

Tương tự: \(\frac{b}{3-b^2}\ge\frac{b^2}{2}\)(1); \(\frac{c}{3-c^2}\ge\frac{c^2}{2}\)(2)

Cộng theo vế ba bất đẳng thức (*), (1) và (2), ta được: \(\frac{a}{3-a^2}+\frac{b}{3-b^2}+\frac{c}{3-c^2}\ge\frac{a^2+b^2+c^2}{2}=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b = c = 1

8 tháng 7 2017

\(3=a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{3}\Rightarrow a+b+c\le3\)

\(M=2\left(a+b+c\right)+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge2\left(a+b+c\right)+\dfrac{9}{a+b+c}\)

\(=2\left[a+b+c+\dfrac{9}{a+b+c}\right]-\dfrac{9}{a+b+c}\ge2.\sqrt{9}-\dfrac{9}{3}=6-3=3\)Min = 3 khi a=b=c =1

17 tháng 7 2017

mk cx ra luôn luk đấy giống bạn cảm ơn bạn nhiều nha !

eoeo