K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

Ta có:

\(P=\frac{ab}{\sqrt{c+ab}}+\frac{bc}{\sqrt{a+bc}}+\frac{ca}{\sqrt{b+ca}}\)

\(=\frac{ab}{\sqrt{1-a-b+ab}}+\frac{bc}{\sqrt{1-b-c+bc}}+\frac{ca}{\sqrt{1-a-c+ca}}\)

\(=\frac{ab}{\sqrt{\left(1-a\right)\left(1-b\right)}}+\frac{bc}{\sqrt{\left(1-b\right)\left(1-c\right)}}+\frac{ca}{\sqrt{\left(1-c\right)\left(1-a\right)}}\)

\(\le\frac{a^2}{2\left(1-a\right)}+\frac{b^2}{2\left(1-b\right)}+\frac{b^2}{2\left(1-b\right)}+\frac{c^2}{2\left(1-c\right)}+\frac{c^2}{2\left(1-c\right)}+\frac{a^2}{2\left(1-a\right)}\)

\(=-\left(\frac{a^2}{a-1}+\frac{b^2}{b-1}+\frac{c^2}{c-1}\right)\)

\(\le-\frac{\left(a+b+c\right)^2}{a+b+c-3}=\frac{1}{3-1}=\frac{1}{2}\)

Vậy GTLN là  \(P=\frac{1}{2}\) khi \(a=b=c=\frac{1}{3}\)

31 tháng 3 2017

Biến đổi một chút, ta có:\(\frac{bc}{\sqrt{a+bc}}=\frac{bc}{\sqrt{a\left(a+b+c\right)+bc}}\)

\(=\sqrt{\frac{bc}{a+bc}}\cdot\sqrt{\frac{bc}{c+a}}\le\frac{1}{2}\left(\frac{bc}{a+b}+\frac{bc}{a+c}\right)\)

Tương tự cho 2 BĐT còn lại ta có: 

\(\frac{ca}{\sqrt{b+ca}}\le\frac{1}{2}\left(\frac{ca}{a+b}+\frac{ca}{b+c}\right);\frac{ab}{\sqrt{c+ab}}\le\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{a+b}\right)\)

Cộng ba bất đẳng thức trên lại theo vế, ta có:

\(\frac{bc}{\sqrt{a+bc}}+\frac{ca}{\sqrt{b+ca}}+\frac{ab}{\sqrt{c+ab}}\le\frac{1}{2}\left(a+b+c\right)=\frac{1}{2}\)
 

25 tháng 5 2018

\(c+ab=\left(a+b+c\right)c+ab=ac+cb+c^2+ab=\left(a+c\right)\left(b+c\right)\)

Tương tự : \(a+bc=\left(a+b\right)\left(a+c\right);c+ab=\left(c+a\right)\left(c+b\right)\)

\(P=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(b+a\right)}}\)

áp dụng bất đẳng tức cauchy :

\(\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)

\(\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)

\(\sqrt{\frac{ca}{\left(b+c\right)\left(b+a\right)}}\le\frac{1}{2}\left(\frac{c}{b+c}+\frac{a}{b+a}\right)\)

cộng vế theo vế 

\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{c+b}+\frac{b}{a+b}+\frac{c}{a+c}+\frac{c}{b+c}+\frac{a}{b+a}\right)\)

\(\Leftrightarrow P\le\frac{1}{2}\left(\frac{a+c}{a+c}+\frac{b+c}{b+c}+\frac{a+b}{a+b}\right)=\frac{1}{2}\cdot3=\frac{3}{2}\)

dấu "=" xảy ra khi a=b=c=1/3

24 tháng 8 2020

Có a+b+c=1 => c=(a+b+c).c=ac+bc+c2

\(\Rightarrow c+ab=ac+bc+c^2+ab=a\left(b+c\right)+c\left(b+c\right)=\left(b+c\right)\left(a+c\right)\)

\(\Rightarrow\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\le\frac{\frac{a}{c+b}+\frac{b}{c+b}}{2}\)

Tương tự ta có \(\hept{\begin{cases}a+bc=\left(a+b\right)\left(a+c\right)\\b+ac=\left(b+a\right)\left(b+c\right)\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{\frac{bc}{a+bc}}=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{b}{a+b}+\frac{c}{a+c}}{2}\\\sqrt{\frac{ca}{b+ca}}=\sqrt{\frac{ca}{\left(b+c\right)\left(b+a\right)}}\le\frac{\frac{c}{b+c}+\frac{a}{b+a}}{2}\end{cases}}}\)

\(\Rightarrow P\le\frac{\frac{b}{a+b}+\frac{c}{c+a}+\frac{c}{b+c}+\frac{a}{a+b}+\frac{a}{c+a}+\frac{b}{c+b}}{2}\)\(=\frac{\frac{a+c}{a+c}+\frac{c+b}{c+b}+\frac{a+b}{a+b}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

10 tháng 1 2020

tham khảo

https://olm.vn/hoi-dap/detail/106887527253.html

20 tháng 5 2019

Ta có \(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\frac{ab}{\left(c+b\right)\left(c+a\right)}}\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{a+b}\right)\)

Khi đó \(P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}\right)+\frac{1}{2}\left(\frac{a}{a+c}+\frac{c}{a+c}\right)+\frac{1}{2}\left(\frac{b}{b+c}+\frac{c}{b+c}\right)=\frac{3}{2}\)

\(MaxP=\frac{3}{2}\)khi a=b=c=1/3

19 tháng 5 2017

ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho

9 tháng 8 2020

gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

=> Thay vào thì     \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)

\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)

Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào

=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)

=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)

=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\) 

23 tháng 8 2020

Bài 1: Ta có \(\left(\frac{a^2}{b}-a+b\right)+b^2=\frac{a^2-ab+b^2}{b}+b\ge2\sqrt{a^2-ab+b^2}\)  (áp dụng Bất Đẳng Thức Cosi)

\(=\sqrt{a^2-ab+b^2}+\sqrt{\frac{3}{4}\left(a-b\right)^2+\frac{1}{4}\left(a+b\right)^2}\ge\sqrt{a^2-ab+b^2}+\frac{1}{2}\left(a+b\right)\)

\(\Rightarrow\frac{a^2}{b}-a+2b\ge\sqrt{a^2-ab+b^2}+\frac{1}{2}\left(a+b\right)\left(1\right)\)

Tương tự ta có \(\hept{\begin{cases}\frac{b^2}{c}-b+2c\ge\sqrt{b^2-bc+c^2}+\frac{1}{2}\left(b+c\right)\left(2\right)\\\frac{c^2}{a}-c+2a\ge\sqrt{c^2-ac+a^2}+\frac{1}{2}\left(a+c\right)\left(3\right)\end{cases}}\)

Từ (1) và (2) và (3) \(\Rightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ac+a^2}\)

Dấu "=" xảy ra khi a=b=c

24 tháng 12 2019

a) \(\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow\frac{a^2+2ab+b^2}{4}-ab\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng \(\forall a,b\) )

=>đpcm

25 tháng 12 2019

Cô si

\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}\cdot\frac{ca}{b}}=2c\)

\(\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca}{b}\cdot\frac{ab}{c}}=2a\)

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}\cdot\frac{bc}{a}}=2b\)

Cộng lại ta có:

\(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\Rightarrowđpcm\)

22 tháng 5 2019

Ta có:

\(\frac{ab}{\sqrt{2017c+ab}}=\frac{ab}{\sqrt{\left(a+b+c\right)c+ab}}\)

\(=\frac{ab}{\sqrt{a\left(b+c\right)+c\left(b+c\right)}}=\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

Áp dụng BĐT AM-GM (cô si): \(ab.\frac{1}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\frac{ab}{2}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)=\frac{ab}{2\left(a+c\right)}+\frac{ab}{2\left(b+c\right)}\)

Tương tự với hai BĐT còn lại và cộng theo vế,ta được:

\(A\le\frac{ab}{2\left(a+c\right)}+\frac{ab}{2\left(b+c\right)}+\frac{bc}{2\left(a+b\right)}+\frac{bc}{2\left(a+c\right)}+\frac{ca}{2\left(b+c\right)}+\frac{ca}{2\left(a+b\right)}\)

Thu gọn lại bằng cách cộng những phân thức cùng mẫu và rút gọn phân thức,ta được:

\(A\le\frac{a+b+c}{2}=\frac{2017}{2}\).

Dấu "=" xảy ra khi \(a=b=c=\frac{2017}{3}\)

Vậy...

9 tháng 7 2020

Ta có  \(c+ab=\left(a+b+c\right)c+ab=ab+bc+c^2-ab=\left(a+c\right)\left(b+c\right)\)

Tương tự có  \(a+bc=\left(b+a\right)\left(c+a\right)\)

\(b+ca=\left(b+c\right)\left(a+b\right)\)

Khi đó : \(P=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(b+a\right)\left(c+a\right)}}+\sqrt{\frac{ca}{\left(c+b\right)\left(a+b\right)}}\)

Áp dụng BĐT AM-GM ta có 

\(\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)

\(\sqrt{\frac{bc}{\left(b+a\right)\left(c+a\right)}}\le\frac{1}{2}\left(\frac{b}{b+a}+\frac{c}{c+a}\right)\)

\(\sqrt{\frac{ca}{\left(c+b\right)\left(a+b\right)}}\le\frac{1}{2}\left(\frac{c}{c+b}+\frac{a}{a+b}\right)\)

Cộng theo vế các bất đẳng thức cùng chiều

\(P\le\frac{1}{2}\left(\frac{a+c}{a+c}+\frac{b+c}{b+c}+\frac{b+a}{b+a}\right)=\frac{3}{2}\)

Vậy \(Max_P=\frac{3}{2}\)khi \(a=b=c=\frac{1}{3}\)