Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)
\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:
\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)
Thiết lập các BĐT tương tự:
\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)
Dấu "=" không xảy ra nên ta có ĐPCM
Lưu ý: lần sau đăng từng bài 1 thôi nhé !
1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:
\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)
TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)
\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)
Cộng vế với vế ta được:
\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)
Do \(a+b+c=1\) nên Bất đẳng thức trên tương đương:
\(\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{c}{1+c}\le\dfrac{3}{4}\)
\(\Leftrightarrow\left(1-\dfrac{1}{1+a}\right)+\left(1-\dfrac{1}{1+b}\right)+\left(1-\dfrac{1}{1+c}\right)\le\dfrac{3}{4}\)
\(\Leftrightarrow3-\left(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\right)\le\dfrac{3}{4}\)
Áp dụng BĐT cauchy-schwarz engel với a;b;c>0 ta có:
\(3-\left(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\right)\le3-\dfrac{\left(1+1+1\right)^2}{1+a+1+b+1+c}=3-\dfrac{9}{4}=\dfrac{3}{4}\)
Ta có:
\(\dfrac{a}{2a+b+c}+\dfrac{b}{a+2b+c}+\dfrac{c}{a+b+2c}=\dfrac{a}{\left(a+b\right)+\left(a+c\right)}+\dfrac{b}{\left(a+b\right)+\left(b+c\right)}+\dfrac{c}{\left(a+c\right)+\left(b+c\right)}=\dfrac{a}{4}.\dfrac{4}{\left(a+b\right)+\left(a+c\right)}+\dfrac{b}{4}.\dfrac{4}{\left(a+b\right)+\left(b+c\right)}+\dfrac{c}{4}.\dfrac{4}{\left(a+c\right)+\left(b+c\right)}=\dfrac{a}{4}.\dfrac{\left(1+1\right)^2}{\left(a+b\right)+\left(a+c\right)}+\dfrac{b}{4}.\dfrac{\left(1+1\right)^2}{\left(a+b\right)+\left(b+c\right)}+\dfrac{c}{4}.\dfrac{\left(1+1\right)^2}{\left(a+c\right)+\left(b+c\right)}\)Áp dụng BĐT Cauchy - Schwarz:
\(VT\le\dfrac{a}{4}.\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+\dfrac{b}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)+\dfrac{c}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)=\dfrac{1}{4}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)=\dfrac{1}{4}.3=\dfrac{3}{4}\)\("="\Leftrightarrow a=b=c=\dfrac{1}{3}\)
\(vì:a,b,c>0\Rightarrow\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}>0\)
\(Cosi:\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{2}{\sqrt{ab}}\ge\dfrac{2}{\dfrac{a+b}{2}}=\dfrac{4}{a+b}\)
\(\dfrac{4}{2a+b+c}\le\dfrac{1}{4}\left(\dfrac{4}{a+b}+\dfrac{4}{a+c}\right)\le\dfrac{1}{16}\left(\dfrac{8}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=\dfrac{1}{2a}+\dfrac{1}{4b}+\dfrac{1}{4c}.tươngtự:\dfrac{4}{a+b+2c}\le\dfrac{1}{4a}+\dfrac{1}{4b}+\dfrac{1}{2c};\dfrac{4}{a+2b+c}\le\dfrac{1}{4a}+\dfrac{1}{2b}+\dfrac{1}{2c}.\text{cộng vế theo vế ta được:}\dfrac{4}{a+2b+c}+\dfrac{4}{2a+b+c}+\dfrac{4}{a+b+2c}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\left(\text{đpcm}\right)\)
Áp dụng BĐT \(\dfrac{1}{x+y+z+t}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{t}\right)\) với các số dương
Ta có: \(\dfrac{4}{a+a+b+c}\le\dfrac{4}{16}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\dfrac{4}{a+b+2c}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{c}\right)\)
\(\dfrac{4}{a+2b+c}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{c}\right)\)
Cộng vế với vế:
\(\dfrac{4}{2a+b+c}+\dfrac{4}{a+2b+c}+\dfrac{4}{a+b+2c}\le\dfrac{1}{4}\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Dấu "=" xảy ra khi \(a=b=c\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\text{VT}=\frac{\left ( \frac{a}{bc} \right )^2}{\frac{1}{c}}+\frac{\left ( \frac{b}{ca} \right )^2}{\frac{1}{a}}+\frac{\left ( \frac{c}{ab} \right )^2}{\frac{1}{b}}\geq \frac{\left ( \frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab} \right )^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\)
\(\Leftrightarrow \text{VT}\geq \frac{\left ( \frac{a^2+b^2+c^2}{abc} \right )^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\)
Theo hệ quả của BĐT AM-GM thì:
\(a^2+b^2+c^2\geq ab+bc+ac\)
\(\Rightarrow \text{VT}\geq \frac{\left ( \frac{ab+bc+ac}{abc} \right )^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{\left ( \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right )^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Ta có đpcm.
Dấu bằng xảy ra khi \(a=b=c\)
Áp dụngk BĐt cô-si, ta có
\(\frac{a^2}{b^2c}+\frac{b^2}{c^2a}+\frac{1}{a}\ge3.\frac{1}{c}\)
Tương tự , rồi cộng vào, ta có
\(2A+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\Rightarrow A\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(ĐPCM\right)\)
^_^
Bài 3:
Áp dụng bất đẳng thức AM - GM có:
\(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge2\sqrt{x.\dfrac{1}{x}}+2\sqrt{y.\dfrac{1}{y}}+2\sqrt{z.\dfrac{1}{z}}\)
\(=2+2+2=6\)
Dấu " = " khi x = y = z = 1
Vậy...
3. Với x,y,z>0 áp dụng BĐT Cauchy ta có
\(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)
\(=\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)+\left(z+\dfrac{1}{z}\right)\)
\(\ge2\sqrt{x.\dfrac{1}{x}}+2\sqrt{y.\dfrac{1}{y}}+2\sqrt{z.\dfrac{1}{z}}=2+2+2=6\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{x}\\y=\dfrac{1}{y}\\z=\dfrac{1}{z}\end{matrix}\right.\Leftrightarrow x=y=z=1\)
1. Với a=b=c=0, ta thấy BĐT trên đúng
Với a,b,c>0 áp dụng BĐT Cauchy cho 3 số dương
\(a^3+a^3+b^3\ge3\sqrt[3]{a^3.a^3.b^3}=3\sqrt[3]{a^6b^3}=3a^2b\) (1)
\(b^3+b^3+c^3\ge3\sqrt[3]{b^3.b^3.c^3}=3\sqrt[3]{b^6c^3}=3b^2c\) (2)
\(c^3+c^3+a^3\ge3\sqrt[3]{c^3.c^3.a^3}=3\sqrt[3]{c^6a^3}=3c^2a\) (3)
Cộng (1), (2), (3) vế theo vế:
\(a^3+b^3+c^3\ge a^2b+b^2c+c^2a>\dfrac{a^2b+b^2c+c^2a}{3}\) (vì a,b,c>0)
Do đó BĐT trên đúng \(\forall a,b,c\ge0\)
Ta có bđt \(\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\)(1)
Chứng minh:
Áp dụng bđt cosi cho 3 số dương:
\(x+y+z\ge3\sqrt[3]{xyz}\left(2\right)\)
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge3\sqrt[3]{\dfrac{1}{xyz}}\)(3)
Từ (2),(3)\(\Rightarrow\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\dfrac{1}{xyz}}=9\)
Vậy bđt (1) đã chứng minh
Áp dụng bđt (1), ta có \(\left[\left(2a+b\right)+\left(2b+c\right)+\left(2c+a\right)\right]\left(\dfrac{1}{2a+b}+\dfrac{1}{2b+c}+\dfrac{1}{2c+a}\right)\ge9\Leftrightarrow3\left(a+b+c\right)\left(\dfrac{1}{2a+b}+\dfrac{1}{2b+c}+\dfrac{1}{2c+a}\right)\ge9\Leftrightarrow3.1.\left(\dfrac{1}{2a+b}+\dfrac{1}{2b+c}+\dfrac{1}{2c+a}\right)\ge9\Leftrightarrow\dfrac{1}{2a+b}+\dfrac{1}{2b+c}+\dfrac{1}{2c+a}\ge3\)Vậy nếu a+b+c=1 thì \(\dfrac{1}{2a+b}+\dfrac{1}{2b+c}+\dfrac{1}{2c+a}\ge3\)